
AFHRL-TP-87-6 LI.LJi

AIR FORCE APPROPRIATENESS MEASUREMENT

Fritz Drasgow
00 U Michael V. Levine

Mary E. McLaughlin

I Universal Energy Systems, Inc.A 4401 Dayton-Xenia RoadA Dayton, Ohio 45432

N James A. Earles

MANPOWER AND PERSONNEL DIVISION
Brooks Air Force Base, Texas 78235-5601

R
E

DTIC S August 1987
SEP 0 L 0 Final Technical Paper for Period July 1984 - December 1985

~ UD .. R Approved for public release; distribution is unlimited.

C
E
S LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

87 9 2 005



THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO 'NOT
REPRODUCE LEGIBLY.



NOT ICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related

procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or

in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise in any manner construed, as

licensing the holder, or any other person or corporation; or as conveying

any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to

the National Technical Information Service, where it will be available to

the general public, including foreign nationals.

This paper has been reviewed and is approved for publication.

WILLIAM E. ALLEY, Technical Director

Manpower and Personnel Division

RONALD L. KERCHNER, Colonel, USAF
Chief, Manpower and Personnel Division

I
~ Y.~:~- 4 c v - ~C, -4 - . -



Unclassified

fSEC)7V CLASS.F1CA-:ON OF TWIS PACE 1
Form 4rDroved

REPORT OOCUMENTATION PAGE O SPo 70)..018

ia. REPORT SECURITY CLASSIFICATION I0 RESTRICTIVE MARKINGS
Unclassified

_a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRiBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONOOWNGRADING SCHEDULE Approved for public release: distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
AFHRL-TP-87-6

6s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(if applica We)
Universal Energy Systems, Inc. i Manpower and Personnel Division

6C. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS(City, Sta, and ZIP Code)

4401 Oayton-Xenia Road Air Force Human Resources Laboratory
Dayton, Ohio 45432 Brooks Air Force Base, Texas 78235-5601

B8. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Air Force Human Resources Laboratory HQ AFHRL F41689-84-D-0002

Si. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Brooks Air Force Base, Texas 78235-5601 PROGRAM PROJECT TASK IWORK NIT

ELEMENT NO NO. NO ACCESS-ON NO62730F 7719 I 18 40

11. TITLE (include Security Clswfication)

Appropriateness Measurement

12. PERSONAI AUTHOR(S)
Orasgow, F.; Levine, M.V.; McLaughlin, M.E.

1a. TYPE oF REPORT ~1b. TIME COVERED 14. DATE OF REPORT (Year, Month, ay) 1S. PAGE COUNT
Final FROM Jul 84 TO Dec 85 August 1987 138

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and dontify by block number)

FIELD GROUP SUB-GROUP appropriateness indices

05 08 aptitude test

05 09 Armed Services Vocational Aptitude Battery

19. ABSTRACT (Continue on reverse if necesury and identify by block number)

\Cheating to raise scores (e.g., to qualify for some desired job or training) and deliberately missing test
items to lower scores (e.g., to receive an exemption from military service in a period of general mobilization)
are both plausible threats to the integrity of multiple-choice tests. The goal of Appropriateness Measurement is

to identify such aberrant test responding; the usual practive is the application of a mathematical procedure to an
examinee's item responses which assigns a number (index) related to the probability of aberrant responding.
Eleven appropriateness indices were investigated. Three Item Response Theory indices (Drasgow, Levine, and

William's 1-naught and Tatsuoka's extended caution indices T2 and T4) were effective in detecting aberrant

response patterns across a fairly wide range of conditions for a long (85-item) unidimensional test. Their

effectiveness was much reduced on a short (30-item) unidimensional test. Methods were developed for combining
information across several short unidimensional tests such as are typically found in aptitude batteries, and

detection rates were obtained that were comparable to those for the long test. It is concluded tnat

appropriateness indices based on Item Response Theory can be used effectively in operational test programs.

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

CE UNCASSIFIEO/UNLMITED C3 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPwONE (include Area Code) 22c OFFICE SYMBOL
Nancy J. Allin, Chief, STINFO Office (512) 536-3877 AFHRL/TSF

DO Form 1473, JUN 86 Previous ea, ors are obsolete SECiTv CLASSICA' ON O" -

Unclassified

M- 6



AFHRL Technical Paper 87-6 August 1987

APPROPRIATENESS MEASUREMENT

Fritz Drasgow

Michael V. Levine
Mary E. McLaughlin

Universal Energy Systems, Inc.
4401 Dayton-Xenia Road

Dayton, Ohio 45432

James A. Earles

MANPOWER AND PERSONNEL DIVISION

Brooks Air Force Base, Texas 78235-5601

Reviewed by

John R. Welsh, Major, USAF
Chief, Enlisted Selection and Classification Function

Submitted for publication by

Lonnie D. Valentine, Jr.
Chief, Force Acquisition Branch

Manpower and Personnel Division

This publication is primarily a working paper. It is published solely to document work performed.

Imaao" '' N1



SUIGLRY

The military services have a vital concern in assuring that aptitude test
scores are appropriate measures of examinees' true abilities. Substantial
bonuses have been paid to examinees with sufficiently high scores as
enticement to enlist into selected occupations. Under mobilization, exemption
from service will be given to examinees with unacceptably low scores.
Therefore, cheating to improve scores and deliberately picking incorrect
answers to lower scores are both plausible threats to the integrity of
enlistment testing. The goal of Appropriateness Measurement is to develop
ways to analyze examinees' responses to multiple-choice tests so as to
identify such inappropriate test responding.

This effort evaluates 11 practical appropriateness indices. Three, which
are based on modern test theory (Item Response Theory), were found to
effectively detect aberrant response patterns across a fairly wide range of
conditions. This success was obtained when the test had many items but was
substantially lessened for military selection test lengths. However, methods
developed for combining information on aberrant responding across several
different tests resulted in an effectiveness comparable to that found with the
longer tests.

The results strongly suggest that appropriateness indices can be used
effectively in operational settings. Further research is suggested on a class
of indices called "optimal" which hold the promise of even better
identification of aberrant responding than those indices already identified.
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PREFACE

This effort was accomplished under Project 7719, "Development and
Validation of Selection Methodologies." It represents the continuing effort
of the Air Force Human Resources Laboratory to fulfill its research and
development (R&D) responsibilities through development and application of
state-of-the-art methodologies for the continued improvement of the Armed
Services Vocational Aptitude Battery (ASVAB).

We wish to thank Bruce Williams and Gregory L. Candell for their help in
conducting the research described in Chapter III. They will be coauthors of
the paper summarizing this research when it is submitted for journal
publication.
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I. INTRODUCTION AND OVERVIEW

Some examinees' scores on a multiple-choice test may fail to provide
valid measures of the trait measured by the test. Examinees can obtain
spuriously high scores because they copy answers from more talented neighbors
or because they have been given the answers to some questions. Examinees can
obtain spuriously low scores due to alignment errors (answering, say, the
tenth item in the space provided for the ninth item, answering the eleventh
item in the space provided for the tenth item, etc.), language difficulties,
atypical educations, and unusually creative interpretations of normally easy
items.

Detecting inappropriate test scores is very important in military
testing. For example, substantial recruitment bonuses may be erroneously paid
to low ability examinees who obtain spuriously high test scores. Many of
these individuals are likely to fail to complete military technical training
schools; this leads to high attrition costs. Even when such individuals are
able to complete training, they are likely to exhibit low on-the-job
performances.

Spuriously low scores can also cause serious difficulties in military
testing. Spuriously low scores can lead to difficulties in filling important
manpower needs because truly able individuals will be inappropriately
disqualified. This problem is likely to be exacerbated in the future as the
birthrates of many demographic groups decline.

The goal of Appropriateness Measurement is to identify inappropriate test
scores. In recent years, several methods for identifying these test scores
have been devised. In all approaches, response patterns are characterized in
a way that permits us to assess quantitatively the degree to which an observed
response vector is atypical. This quantitative measure is then used to
classify response patterns into appropriate (i.e., normal) and inappropriate
(i.e., aberrant) categories.

In a series of studies, it has been found that simulated spuriously high
response patterns and simulated spuriously low response patterns can be
detected by appropriateness measurement. High detection rates have been
obtained despite model misspecification, errors in item characteristic curve
parameter estimates, and the inclusion of inappropriate response patterns in
the test norming sample (Levine & Drasgow, 1982). Very high detection rates
have been obtained when response patterns of low ability examinees have been
modified to simulate cheating and when response patterns of high ability
examinees have been modified to simulate spuriously low responding (Drasgow,
Levine, & Williams, 1985).

Among the many methods that have been proposed, which is best for
detecting inappropriate test scores on the short unidimensional power subtests
from the Armed Services Vocational Aptitude Battery (ASVAB)? Also, is there
some clearly superior method that has not yet been proposed? Previous

g..iN.
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research on Appropriateness Measurement has generally focused on long
unidimensional tests such as the Scholastic Aptitude Test-Verbal section (SAT-
V) and the Graduate Record Examination-Verbal section (GRE-V). The research
described in this paper was designed to determine which of these indices is
best for ASVAB subtests (in particular, the portion known as the Armed Forces
Qualification Test or AFQT) and, as described below, to decide if the best
method currently available could be significantly improved.

The difficult problem of evaluating the effectiveness of an
appropriateness index was recently solved to a large extent by Levine and
Drasgow (1984; 1987). They developed statistical theory and numerical methods
that enabled them to compute optimal appropriateness indices for given forms
of aberrance. These indices are optimal in the sense that no other statistics
computed from an examinee's item responses can achieve higher rates of
detection (at each error level) of given forms of aberrance. Thus, the
absolute effectiveness of any practical, easy-to-compute appropriateness
index previously suggested in the literature can be determined by comparing it
to an optimal index.

Many appropriateness indices were evaluated in the present effort. The
best practical appropriateness indices based on Item Response Theory (IRT)
were found to be far superior to non-IRT alternatives, such as the
standardized residual from a multiple regression equation. In some cases, the
best practical indices had detection rates that were nearly as high as the
detection rates of optimal appropriateness indices. In other situations,
optimal indices provided far higher detection rates.

At present, optimal indices show promise for use in operational settings.
With further development, optimal indices could be used to provide powerful
detection of specific forms of aberrance that are difficult to detect using
even the best practical indices. For example, suppose a test score falls into
AFQT Category 3A. Does the examinee truly belong to this ability category?
Or is the examinee actually an AFQT Category 3B examinee who was unethically
given the answers to a moderate number of items? An optimal index can be
formulated to test such hypotheses.

In the first study described in this report, 11 practical appropriateness
indices were evaluated and compared to optimal indices. Simulated SAT-V data
were used in the first study because many of the practical indices were
originally proposed in the context of a long unidimensional test. Optimal
indices were found to provide very high rates of. detection of inappropriate
response patterns. The best practical indices were nearly optimal in some

conditions but fell short of optimal in other conditions.

In the second study conducted for this effort, the effectiveness of each
of the practical and optimal indices on a short unidimensional test was
evaluated using simulated ASVAB Arithmetic Reasoning (AR) subtest data. Rates
of detection of aberrant response patterns were found to be substantially
reduced for the short AR subtest in relation to the long SAT-V test.

Methods were then developed for combining information about aberrance
across several short unidimensional tests. Simulated and actual ASVAB data
for the AR, Word Knowledge (WK), and Paragraph Comprehension (PC) subtests
were used to evaluate the multi-test appropriateness indices. By increasing

I. .
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the number of items from 30 on the AR test to 80 on the combined AR, WK, and
PC subtests, we obtained detection rates that were comparable to the 85-item
SAT-V.

The following chapters describe the present research and development
(R&D) effort, provide concluding remarks, and suggest directions for future
R&D. The results strongly suggest that appropriateness indices based on IRT
can be used effectively in operational settings. Further significant gains in
detection rates are expected if optimal indices are developed for use in
operational settings.

II. DETECTING INAPPROPRIATE TEST SCORES ON A LONG UNIDIMENSIONAL
TEST WITH OPTIMAL AND PRACTICAL APPROPRIATENESS INDICES

Introduction

It is relatively easy to propose new appropriateness indices.
Unfortunately, evaluations of the relative merits of the various indices have
been very difficult in previous research. Cliff's (1979, p. 388) description
of a related problem cogently summarized the difficulty in evaluating indices:
"Now the trouble is that the formulas multiply not just like rabbits, or even
guppies, but rather like amoebae: by both fusion and conjugation, and there
seemed to be no general principle to use in selecting from among them."
Harnisch and Tatsuoka (1983), for example, correlated 14 different indices in
order to see which pairs were more and less related, but this approach has
limited value in determining which index is best. Furthermore, this approach
does not determine which indices, if any, are good enough for operational use.

In the past, two criteria have been used to evaluate appropriateness
indices: standardization and relative power. Standardization, introduced by
Drasgow, Levine, and Williams (1985), refers to the extent to which the
conditional distributions (given particular values of the latent trait) of an
index are invariant across levels of the latent trait. There is little
confounding between ability and measured appropriateness for a well-
standardized index. Well standardized indices have two attractive features.
First, high rates of detection of aberrant response patterns by well-
standardized indices cannot be due merely to differences in ability
distributions or number-right distributions across normal and aberrant
samples. In contrast, high detection rates obtained by poorly standardized

. indices may be due largely to differences in ability distributions. This
point is illustrated in a later section of this chapter. Second, a well-
standardized index is easy to use in practice because index scores for
individuals with different standings on the latent trait can be compared
directly. In contrast, scores on poorly standardized indices can be
interpreted only in relation to their conditional distributions; consequently,
a single cutting score for classification into aberrant and appropriate groups
is not possible. Furthermore, it is sometimes very difficult and time-

* consuming to obtain the conditional distributions of an appropriateness index.
In such cases, the practical usefulness of the index is limited.

3
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Relative power, the second criterion used to evaluate appropriateness
indices, refers to the ability of a particular index to correctly classify
aberrant response patterns as aberrant, compared to the classification rate of
another index. If some well-standardized index has acceptable power, then it
can be used in operational settings. Unfortunately, no unequivocal
conclusions about the detectability of some form of aberrance are possible if
none of the indices under consideration has adequate power. We do not know
whether or not there exists some other index, not included in the
experimental study, that has acceptable power. In addition, even if an index
were found to have adequate power for operational use, we do not know whether
or not there is an index, as yet undiscovered, that is substantially superior
to all known indices.

It is now possible to determine the detectability of a specified form of
aberrance by the methods devised by Levine and Drasgow (1984; 1987). They
introduced a general method for ascertaining the maximum power that can be
achieved by any index. Chapters 2, 3, and 4 contain the first major
applications of the method.

By means of a new numerical algorithm, Levine and Drasgow (1984 ; 1987)
were able to apply the Neyman-Pearson Lemma to specify an appropriateness
index that is optimal in the sense that no other index computed from the item
responses can achieve a higher detection rate (at each error rate) of the
given form of aberrance.

As a result of their research, it is now possible to determine the
absolute effectiveness of an index for detecting a particular type of
aberrance on a given test. The absolute effectiveness of an index is
determined by comparing its detection rate with the detection rate of the
corresponding optimal index. In the first study conducted for this effort,
11 different appropriateness indices were evaluated for their abilities to
detect spuriously high and low response patterns on a long unidimensional
power test: namely, the SAT-V.

The appropriateness indices examined in the first study and some
computational notes are presented in the next section. The extent to which
each index is standardized and the power of each index for detecting several
forms of aberrance are then examined. Some remarks concerning the results
are provided in the final section of this chapter.

Appropriateness Indices

Optimal Indices

Suppose we wish to test a simple null hypothesis against a simple
alternative hypothesis. If the probability of a Type I error is a, then the
most powerful test is the test that minimizes the probability of a Type II
error among the set of tests with the given Type I error rate. The Neyman-
Pearson Lemma states that maximum power is achieved by a likelihood ratio
test. More specifically, let LN(x) and LA(x) denote the likelihoods of the

data x under the null and alternative hypotheses, respectively. Then the
Neyman-Pearson Lemma states that of all tests with a Type I error rate of a,

4
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none is more powerful than a test obtained from the likelihood ratio

The Neyman-Pearson Lemma can be applied in the context of Appropriateness
Measurement to construct most powerful tests and, consequently, optimal

appropriateness indices. To see how it is used, suppose that local
independence holds, u = (1, ..., u n), and Pi(u i8) is the prcbability of

response ui to item i by an examinee of ability 8 under the null hypothesis

that the response pattern is appropriate (normal). Then the likelihood of a
response vector u by an examinee of ability 8 is

n
P (U10) rH P. (u. 10.z-Normal i=1 - 1 -i

If the ability density is f(8), then using elementary probability

-L.Normal(U) : PNormal(U) f(G) d.

To apply the Neyman-Pearson Lemma, it is necessary to compute
PAberrant(u). This quantity can be obtained by carrying the conditioning-

integrating argument one step further. For concreteness, suppose that the

type of aberrance under consideration consists of m randomly selected items
being modified by the spuriously low treatment. Let S denote a set

-k
indicating the kth way of selecting m of n items (of the (n) ways possible),

let PAberran t(uI8,S) denote the likelihood of response pattern u for

an examinee with ability e when the items in S are subjected to the
-k

spuriously low treatment, and let P(Sk) denote the probability of S k (i.e.,

S1/(n )). Then

P(U() =E P (UI/m •
-Aberrant k -Aberrant ( k -(_k

so that

PAberrant(u) = [ Aberrant(ulO,S) P(:S)] f(8) d8. (1)

By taking advantage of the symmetry in the P (u18,S ), Levine and
-Aberrant -k

Drasgow (1984) obtained an efficient numerical algorithm for computing

PAberrant(u18). Using a numerical quadrature formula, the right-hand side of

Equation 1 can be accurately evaluated with an acceptable amount of

computation. Details about these calculations and a theoretical treatment of

the general problem are provided by Levine and Drasgow (1984; 1987).

Thus, it is possible to compute the likelihood ratio

5
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LR = PAberrant(U)/Normal(U) (2)

and test the simple null hypothesis that a response pattern is normal against
the simple alternative hypothesis that the response pattern is aberrant. Due
to the Neyman-Pearson Lemma, the likelihood ratio statistic provides a most
powerful test; consequently, when it is used as an appropriateness index, the
likelihood ratio statistic is as powerful as any index that can be computed
from the item responses.

Standardized 2.

Let z, denote the standardized i, index (Drasgow et al., 1985). It may
be computed by the formula

3 - M(O)z1 1: ( 3 )
'I is(e)]1/2 •

In this formula, 2, is the logarithm of the three-parameter logistic

likelihood function evaluated at the maximum likelihood estimate 0 of 0:

n
a, (o : [uilog P i() + (1-u )log gi(8)I,

where u i is the dichotomously scored (1=correct, O=incorrect) item response

for item i, i 1, 2, . %.., ; () 1 -Pi();

1-c.
Pt(e) = c. + , (4)

-. - 1+ exp[-Da.(-bi)]

D 1.702; and a bi, and c. are item parameter estimates.

The conditional expectation of Q,, given 0 0 , is

n
M(o) = [Pi(0) log Fi(0) + Qi(e) log Q(0i)] (5)

and its conditional variance is

n
S(G) (P (G)Q (8)[log(P (0)/Q (0))],}). (6)

Justifications of these formulas can be found in Drasgow et al. (1985).
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Fit Statistics

Two fit statistics for the three-parameter logistic model were suggested

by Rudner (1983) as generalizations of the Rasch model fit statistics used by
Wright (1977) and his colleagues. The first is the mean squared standardized
residual

n

F1 -nl [ui  _ P(e)j
2/[pi(G)Qi(e)]. (7)

The other fit statistic is

n n
F2 : [u. - Pi(e}w/ t P.(e)Qi(e), (8)

i:I _ i:I -

which Rudner found to be quite effective in some cases (see Rudner, 1983, p.

214 and p. 216, where Rudner uses W3 to denote an expression proportional to
Equation 8).

Likelihood Function Curvature Statistics

Four indices that provide measures of the "flatness" of the likelihood
function were evaluated. These indices are motivated by the notion that
inappropriate responses will flatten the likelihood function near its maximum
because no single value of 0 will allow the item response model to provide a
good fit to the response vector. Therefore, the likelihood function will not
have a sharp maximum; instead, it will be relatively flat.

Normalized Jackknife. The first measure of the curvature of the

likelihood function is the normalized Jackknife variance estimate. In order

to compute this index, let 0 denote the three-parameter logistic maximum

likelihood estimate of ability based on all n test items and let Q) denote

the estimate based on the n - 1 items remaining when item j is excluded. The
pseudo-values (see, for example, Mosteller & Tukey, 1968) are

B = no - (n- (j) j 1, 2, n.

The Jackknife estimate of 0 is then

1 n

and the Jackknife estimate of its variance is

' .Z(e)z - 6 ,J),
,ar(O n(n-1)

7
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The Jackknife variance estimate is not a standardized appropriateness
index; there is more Fisher information about e in some ability ranges than in-I

others, and so Var(8 ) is expected to depend upon 8. Lord's (1980) formula
for the information of the three-parameter logistic maximum likelihood
estimate of 8,

n [P Ie ' ] 2

1(0) (9)

can be used to reduce this problem. Since the reciprocal of 1(e) is the

asymptotic variance of 0, the jackknife estimate of variance can be

approximately normalized by evaluating the information function at 8 and
computing

JK = Var(e )M(e). (10)

It is possible to arrange the calculations for computing JK very
efficiently. We found that one Newton-Raphson iteration was adequate to move

from 0 to j) Then, since the first and second derivatives of the log

likelihood functions for the whole test are sums over n items, the first and
second derivatives of the log likelihood functions for the n-1 item test can
be obtained by single subtractions of already computed quantities.

Consequently, all the pseudo-values, 8 , and JK can be obtained with fewer
arithmetic calculations than are required in a single Newton-Raphson iteration

in the calculation of 8.

Convergence of 8. A possible consequence of a relatively flat likelihood

function for aberrant response patterns is that the number of iterations

required to obtain 8 may be increased. The number NI of Newton-Raphson

iterations required to obtain 8 can therefore be used as an appropriateness
index.

Expected versus Observed Likelihood Function Curvatures. This index
(O/E) is also motivated by an hypothesis about the likelihood function's
flatness. If the likelihood function is flatter for aberrant response
patterns than for normal response patterns, then we would expect that the
observed information, defined as minus the second derivative of the log

likelihood function at 8 given the response vector u (see Efron & Hinkley,

1978, p. 457), would be less than the information I(e) given in Equation 9,

which (given 8) does not depend upon u. Thus, the sixth index is the ratio of
the observed and expected information

O/E - / 1(8), (11)
e=e

8
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where I is the log likelihood

n(12) 2 [ u [ilog i (a) + (1- i )log Q 1(0)]. (12)

Bayes Posterior Variance. Another statistic closely related to the O/E

index is the posterior variance B of the Bayes estimate of e. It is expected
to be relatively large for aberrant response vectors and relatively small for
normal response vectors. Thus, it should serve to distinguish between normal
and aberrant response patterns.

Item-Option Variance

Suppose that we consider the subset of N ik examinees in the test norming

sample who selected option k to item i. It is easy to compute the mean
number-right core R ik for these examinees. In this way, we can identify

options to item i that are typically selected by high ability examinees (e.g.,
the correct option) and options that are typically selected by lower ability
examinees. For spuriously high and low response patterns, we would expect to

observe inconsistency in Rik; sometimes options with low Rik are selected and

sometimes options with high Rik are selected. For this reason, we evaluated

the item-option variance

IY = Var(Ri k ) -

as a measure of appropriateness.

Caution Indices

Sato's Caution Index. Three "caution indices" were also be examineq.
The first is Sato's (1975) caution index S (see also Tatsuoka & Linn, 1983,
but replace y, with P,1 for a simpler version of their Equation 1). S is

easy to compute and is widely used in Japan. To compute 5, suppose that the n
test items are ordered from easiest to hardest on the basis of proportion

Vright Pi in the test norming sample. Let

1 n

0be the mean proportion correct and suppose that an examinee answers k items

correctly. If p is a vector containing the p, and g is a perfect Guttman

response pattern with is as its first k elements and Os for the next n-k
elements, then

!N



Cov( u, p)
S = 1-

Cov(g,p)

n

i=1
1 - k ^(14)

i=1

Note that the summation in the denominator of the last expression is from 1 to

k (i.e., over the k items with the smallest pi values), not 1 to n.

Tatsuoka's Standardized Extended Caution Indices. Two indices that are
related to Sato's caution index are the second and fourth standardized
extended caution indices T2 and T4 presented by Tatsuoka (1984, p. 104).
These two indices (of the four studied by Tatsuoka) were included because
Harnisch and Tatsuoka (1983) found that these indices were not related

(linearly or curvilinearly) to true score and, therefore, e.

T2 and T4 can be computed relatively easily. Let 0j denote the three-

parameter logistic maximum likelihood estimate of ability for the Ath person

in the test norming sample of N examinees, and let Pij (0) be the probability

of a correct response to item i by this person computed from Equation 4. Then
define

N

and

n
_: : 1 EG..

n i1 -

To compute T2 and T4 for an examinee in the normal sample or an aberrant
sample, let

Un

Then

I1I
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T2 = Hp[(P(e) - i  (15)[ 21 2/2

and 
ti(O)Q (0)(G - )

and

[(Pi(e) - ui)(Pi(e) -(1
T4 ( i-)21/2 (16)

It should be noted that Equations 14, 15, and 16 are generalizations of
the original caution indices to the situation where item parameters are
estimated in a test norming sample.

Standardization

Problem

Measured appropriateness can be confounded with ability. Drasgow et al.
(1985, p. 74), for example, provide an example of a strong, nearly linear
relation between estimated ability and an unstandardized index. A score of,
say, -50 on this index at one ability level indicates a good fit of the model

>' . to a response vector, but the same index score at other ability levels
indicates a very poor fit. Consequently, an observed difference between the
distributions of index scores for normal and aberrant response vectors is not
unequivocal evidence of index effectiveness. Instead, it may simply reflect
differences in ability or number-right distributions. This problem does not
occur if an appropriateness index is well standardized; that is, if the
conditional distributions (given 8) of the index are (approximately) equal
across possible values of 0 for normal examinees.

In practical applications of Appropriateness Measurement, it would be
convenient if a single cutting score could be used to classify response
patterns as aberrant or normal. If the conditional distributions of an index
are not identical, then the interpretation of a score on a practical
appropriateness index must be made vis-a-vis the associated conditional
distribution. Consequently, it would not be possible to use a single cutting
score to classify response patterns as aberrant nor would it be possible to
compare directly index scores of examinees with differing abilities.

We would expect little degradation of the performance of a well-
standardized index if the ability distribution were to change abruptly. Such
a change would be expected, for example, with the ASVAB examinee population in
a period of national mobilization.

ROC Curves

If an index is properly standardized, its distribution will be nearly the
same in subpopulations of normal examinees who differ in ability. Hence, the
index could not be used to distinguish among groups. A standard, very general
method for studying the extent to which some statistic can differentiate
between two groups is the Receiver Operating Characteristic (ROC) curve.

WO1
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Thus, we can study index standardization by using an ROC curve to determine
whether the index distinguishes between groups of normal examinees who differ
in ability.

An ROC curve is obtained by specifying a cutting score t for an index and
then computing

x(t) = proportion of group 1 (say, normal, low ability
examinees) response patterns with index values less
than t (assuming that small index values indicate
aberrance);

y(t) = proportion of group 2 (say, normal, high ability

examinees) response patterns with index scores less
than t.

An ROC curve consists of the points (x(t),y(t)) obtained for various values of
t. The proportion x(t) is called the false alarm rate, and y(t) is called the
hit rate. A detailed example of the construction of an ROC curve is given by
Hulin, Drasgow, and Parsons (1983, pp. 131-134).

An appropriateness index is well-standardized across two ability levels
if the ROC curve lies along the diagonal line y =x.

Method

Polychotomous item responses (five-option multiple-choice items with
omitting allowed) were simulated using the histograms constructed by Levine
and Drasgow (1983). They used the three-parameter logistic model to estimate
the abilities of 49,470 examinees from the 85-item April 1975 administration
of the SAT-V. Then the examinees were sorted into 25 groups on the basis of
estimated ability. The 4th, 8th, ..., 96th percentiles of the normal (0,1)
distribution were used as cutting scores when sorting examinees. Then the
proportions of examinees choosing each option (treating skipped and not-
reached items as a single response category) were computed for each of the 25
ability groups. Probabilities of option choices were then computed by linear
interpolation between category medians (i.e., the 2nd, 6th, ..., 98th
percentiles from the normal (0,1) distribution).

Five samples of normal response patterns were generated by first sampling
3,000 numbers (G's) from the normal (0,1) distribution truncated to the
(-2.05, 2.05] interval. (It was necessary to truncate the ability
distribution because interpolation below the 2nd percentile or above the 98th
percentile was not possible with the histograms.) Then low [-2.05 to -1.50),
moderately low (-.70 to -.55), average (-.05 to .05), moderately high (.55 to
.70), and high (1.49 to 2.05] 6 samples of N = 200 each were formed.

Polychotomous item response vectors were then generated for each 6 value.
For each item, the associated histogram was used to compute the conditional
(given 6) probabilities of the six possible responses (treating skipped and
not-reached as the sixth response). A number was sampled from the uniform
distribution on the unit interval, and a simulated response was obtained by
determining where the random number was located in the cumulative distribution
corresponding to the conditional probabilities.

12
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Finally, each of the 11 practical appropriateness indices was computed
for each response vector in each sample. Then ROC curves were computed for

each of the (5) = 10 possible pairs of samples and each of the 11

appropriateness indices.

Results

Figures 1 through 3 present the results for the low-average, average-
high, and low-high comparisons. The results for the other seven comparisons
were consistent with the trends seen in these three figures; consequently,
they will not be presented. Furthermore, only the lower left quarter of the
ROC curve is plotted because it is unlikely that anyone would set a cutting
score that yielded a false alarm rate of more than 50%.

In Figure 1, it is evident that NI, IOV, S, and B are poorly
standardized. This result is not surprising because no explicit steps were
taken to standardize these indices. The standardizations of the z,, F1, F2,
JK, and O/E indices seem reasonably good across low 0 and average 9 groups.
The standardization of T2 and T4 seem somewhat less adequate, although T2 is
well standardized for false alarm rates of less than .20.

The pattern of results in Figure 2 is somewhat different from the results
in Figure 1. In both figures, NI, IOV, and B are poorly standardized, and z,,
F2, JK, and O/E are again well standardized. But F1 is much less well
standardized in Figure 2. In contrast, the results for S and T4 have improved
considerably. The standardization of T2 was better in Figure 1.

Finally, Figure 3 presents the results comparing the low 0 normals to the
high 0 normals. The pattern of results indicates that this comparison is the
most severe test of standardization. Note that at low misclassification

.0 rates, only z,, F2, and JK have ROC curves near the diagonal. The
standardizations of NI, IOV, F1, B, and S are all poor. T4 seems standardized
somewhat better than T2.

Power

Problem

Do any of the well-standardized practical appropriateness indices have
adequate power for detecting some form of aberrance? Are any nearly as
powerful as the index that is optimal for the given form of aberrance?

Method

Data Sets. A test norming sample of 3,000 response vectors was created
by sampling 3,000 numbers (9s) from the normal (0,1) distribution truncated to
the [-2.05,2.051 interval. A normal sample of 4,000 response vectors was also
generated in this way. Two thousand aberrant response vectors were created in
each of 12 conditions. The 12 conditions resulted from varying three factors:
the type of aberrance (spuriously high; spuriously low), the severity of
aberrance (mild; moderate), and the distribution from which simulated
abilities were sampled.

St 13
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Six of the aberrant samples contained spuriously high response vectors,
and the remaining six samples contained spuriously low response vectors.
Spuriously high response patterns were created by first generating normal
response vectors (polychotomously scored) and then replacing a given
percentage k of simulated responses (randomly sampled without replacement)
with correct responses. Spuriously low response patterns were also created by
first generating normal response vectors. Then a fixed percentage of items
were randomly selected without replacement, and the responses to these items
were replaced with random responses (i.e., a response was replaced by option A
with probability .2, by option B with probability .2, ..., and by option E
with probability .2). Mildly aberrant response patterns were generated by
using k = 15%. Moderately aberrant response patterns were created using k =

30%.

The third variable manipulated was the ability level of the aberrant
sample. Abilities for the spuriously high samples were sampled from three
parts of the normal (0,1) distribution truncated to [-2.05,2.05]: very low
(Oth through 9th percentiles), low (10th through 30th percentiles), and low
average (31st through 48th percentiles). In all cases, percentile points were
determined after the truncation to [-2.05, 2.05]. These intervals were used
because it is more important to detect spuriously high response patterns for
low ability examinees than for high ability examinees. Similarly, it is more
important to detect spuriously low responses for high ability examinees.
Consequently, abilities were sampled from three above-average ability strata
for the spuriously low samples: very high (93rd percentile and above), high
(65th through 92nd percentiles), and high average (49th through 64th
percentiles). The ability percentiles used here correspond to the percentiles
forming AFQT categories.

Table 1 summarizes the 12 samples of aberrant response vectors. Each of
these 24,000 (=12 x 2,000) response vectors was independently generated.

Analysis. All the item and test statistics required to compute the
practical appropriateness indices were computed using the test norming sample.
These quantities were computed as the first step in the analysis and then used
in all subsequent analyses. LOGIST (Wood, Wingersky, & Lord, 197b) was used to
estimate item parameters and a FORTRAN program was written to compute the
other quantities required.

Then the 11 practical appropriateness indices were computed for the 4,000
response vectors in the normal (responding apprdpriately) sample. The item
and test statistics estimated from the test norming sample were used in these
calculations. This procedure simulates the process by which practical
appropriateness indices would be computed in many applications. Four optimal
indices were also computed for the normal sample: 15% spuriously high, 30%
spuriously high, 15% spuriously low, and 30% spuriously low. The ability
density f used in Equations 1 and 2 was the normal (0,1) density truncated to
the interval [-2.05, 2.05]. The histograms used to generate the data were
also used to compute the optimal indices; that is, polychotomous option
characteristic curves were not estimated. (In order for an optimal index to
be truly optimal for the corresponding form of aberrance, it is necessary to
use the true option characteristic curves.)
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Table 1. Ability Distributions Used to

Generate Aberrant Samples

Percent of Type of aberrance
aberrant responses Spuriously high Spuriously low

15% NT[- 2 .05,-1 .34] NT(I .41,2.05]

15% NT(-1. 34 ,-0.52) NT(O.35 ,1.4 1]

15% NT( -0.52 ,-0.05] NT(-O.05,0. 35]

30% NT[- 2 .05,-1.34] NT( 1.41,2.051

30% NT(-1. 34 ,-0.5 2 ] NT(O.35 ,l1.41]

30% NT( -0.52 ,-0.05] NT( -0 .05,0.351

Note. NT(a,b] is used to denote the standard normal distribution

truncated to the interval (a,b]. Parentheses are used to indicate interval

endpoints that were not included in the interval and brackets are used to

indicate interval endpoints that were included in the interval.
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The 11 practical appropriateness indices were computed for each of the 12
aberrant samples. In addition, the 15% spuriously high optimal index was
computed for the three samples with this form of aberrance; the 30% spuriously
high optimal index was computed for the three samples with this form of
aberrance; etc.

Note that the ability density used in Equations 1 and 2 does not match
the ability density of any aberrant sample. The proper interpretation of the
optimal index is the following: It is the optimal index for the specified
form of aberrance, say 15% spuriously high, in a population where the ability
density is normal (0,1) truncated to [-2.05, 2.05] for both the normal and
aberrant populations and a response vector is either normal or 15% spuriously
high. The normal group does in fact have this ability distribution. By
restricting the abilities of the aberrant group to a subinterval of [-2.05,
2.051, we determined the power in a particular subpopulation of the index that
is optimal for the population as a whole.

Evaluation Criteria. The main criteria used for evaluating the
appropriateness indices were the proportions of aberrant response patterns
that were correctly identified as aberrant when various proportions of normal
response patterns were misclassified as aberrant. These proportions were
determined for all 12 aberrance conditions. This allowed us to determine what
types of aberrant response patterns had acceptably high detection rates using

*' optimal methods and using practical methods. The characteristics of response
patterns that cannot be detected became evident as a consequence of examining

-' the 12 aberrance conditions separately.

Results

Before presenting the results for the 12 aberrant samples, we shall
illustrate some problems caused by poorly standardized appropriateness
indices. Table 2 presents detection rates for the 15% spuriously high

aberrant sample for two different samples of normal responses. In one case,
the normal sample consists of the 200 response vectors with the highest e
values from the normal sample of N : 4,000 previously described; in the other
case, the normal sample consists of the 200 response vectors with the lowest e
value. (Results for B are not given because this index was not programmed in
its final form when this table was constructed.)

As shown in Table 2, the IOV index seems to be fantastic when the normal
group consists of high ability normals: It correctly identified every single
aberrant response vector, without a single misclassification of a normal. The
S index appeared to be an excellent index, although not as powerful as IOV.
In contrast, F1 seemed to be an abysmally poor index.

These results were almost completely contradicted for the low ability
normals. At a 1% false alarm rate, the detection rate of the IOV index was
10% when the normal group consisted of low ability response patterns; it was
100% when the normals were high ability. The comparable rates for S were 78%

4o and 8%, respectively. The results for F1 were in the opposite direction: The
detection rate was 0% for normals of high ability but 34% for normals of low
ability.
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Table 2. Selected ROC Curve Points for the

15% Spuriously High Treatment, Aberrant

Response Patterns Generated from 0-9% Ability Range

False Proportion detected by

alarm

rate z, F1 F2 S T2 T4 IOV O/E JK NI

S Normal Group : 200 High Ability Normals

001 38 00 12 62 59 18 1.00 18 13 00

005 44 00 16 76 63 39 1.00 19 14 00

01 47 00 34 78 72 40 1.00 21 15 00

02 56 00 42 82 75 60 1.00 26 21 00

03 61 00 53 86 83 65 1.00 30 22 00

04 67 00 54 87 84 69 1.00 40 26 00

S 05 73 00 57 91 84 69 1.00 40 30 00

07 77 01 65 93 89 79 1.00 46 30 00

10 79 07 74 96 93 82 1.00 54 35 00

Normal Group 200 Low Ability Normals

001 26 25 25 00 14 21 00 00 00 00

005 31 33 27 06 38 26 05 00 00 00

01 44 34 36 08 44 30 10 01 03 00

02 48 46 42 11 49 32 13 03 05 00

03 50 48 46 11 50 37 16 04 09 00

04 52 49 54 20 53 45 18 06 12 00

05 61 54 57 24 59 48 23 09 17 00

07 67 63 61 30 64 53 29 11 19 00

10 72 69 67 35 76 62 33 18 23 00

Note. z, = standardized 2,; F1 = fit statistic 1; F2 = fit statistic

2; T2 = second standardized extended caution index; T4 : fourth extended

standardized caution index; IOV = item-option variance; O/E = observed

information divided by expected information; JK = normalized jackknife
estimate of variance; NI : number of Newton-Raphson iterations
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The differences in detection rates for F1, S, and IOV resulted from their

poor standardizations. In contrast, the well-standardized z, had detection
rates of 47% and 44% at a 1% misclassification rate. F2 also had similar
detection rates: 34% and 36%. T2 is not standardized as well as T4; however,
the detection rates for T2 were higher than the rates for T4. O/E and JK had
moderately dissimilar detection rates across the two sets of normals.

VFinally, the detection rates for NI were identical across conditions;
unfortunately, the detection rates were exceedingly poor.

The results for the 15% and 30% spuriously high samples for the low
.V ability range (Oth through 9th percentiles) are shown in Table 3. In this

case, the normal group consisted of 4,000 response vectors that were generated
from e values sampled from the standard normal distribution truncated to
[-2.05,2.05]. Note that the detection rates for z,, F2, and T2 were fairly
close to the rates for LR. It is clear from Table 5 that the 30% spuriously
high treatment is very detectable: LR, z,, and T2 all had detection rates of
90% or more when the error rate was 1%. Even the relative moderate 15%

4" spuriously high treatment (which affected at most 13 items on the 85-item
test) was fairly detectable: LR and z, had detection rates of 50 and 46% at a
1% error rate. O/E and JK, which were shown to be well standardized in the
previous section of this paper, had little power. At a 1% error rate, O/E and
JK detected only 22% and 33% of the 30% spuriously high response vectors.

".. Table 4 presents the results for the 15% and 30% spuriously high
treatment applied to the moderately low ability range (10th through 30th
percentiles). It should be more difficult to detect aberrant response vectors
in this ability range than in the low ability range because the expected
number of responses changed due to the aberrance manipulation is smaller.
Surprisingly, the detection rates for LR did not decrease sharply: At a 1%
error rate, the detection rates were 50% versus 45% for 15% spuriously high,
and 93% versus 89% for 30% spuriously high. The detection rates declined more

Srapidly for z, (46% vs. 30% for 15% spuriously high; 90% vs. 75% for 30%
spuriously high) and F2 (34% vs. 21%; 85% vs. 73%). The rates of decline of
T2 and T4 were intermediate. T2 declined from 37% to 33% for 15% spuriously
high and from 91% to 81% for the 30% treatment. T4 declined from 30% to 25%
and from 87% to 79%

'.

The trends seen in Tables 3 and 4 continue in Table 5, which presents the
results for the 15% and 30% spuriously high treatments applied to the low
average ability range (31st to 48th percentiles). As shown in Table 5, the LH
index provided detection rates that are roughly 50% higher than those of the
best practical indices. For example, at a 1% error rate LR had a detection
rate of 34% for the 15% treatment; z,, F2, T2, T4 had detection rates of 18%,
15%, 23%, and 20%, respectively. The detection rates were 78% versus 51%,
53%, 51% and 57% for the 30% spuriously nigh condition at a 1% error rate.

Table 6 presents the results for the 15% and 30% spuriously low treatment
applied to the high average ability sample (between the 49th and 64th
percentiles). It is evident that the practica. appropriateness indices dre

quite ineffective relative to the optimal :rmlex. At a 1% error rate,LH haJ A
47% detection rate for the 15% treatment; the nighest rate for any of the
practical indices was only 16%. The pattern of results for the 30% condition

was similar. Here the LR detection rate was An :'pressive 79% when the err

2'
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Table 3. Selected ROC Curve Points for Aberrant

Response Patterns Generated from the 0-9% Ability Range

* False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI

15% Spuriously High

001 30 26 00 12 10 13 13 13 00 00 00 00

005 43 40 00 27 31 25 21 29 01 02 00 00

01 50 46 00 34 45 37 30 42 04 06 00 00

02 59 54 08 44 59 50 41 53 11 12 02 00

03 64 60 22 51 67 56 49 63 16 17 05 00

04 67 64 32 55 72 62 54 70 20 21 09 00

05 70 69 40 60 78 66 59 75 24 23 13 00

07 73 74 52 69 83 73 65 82 31 30 21 00

10 77 80 63 76 89 81 73 89 42 39 35 00

30% Spuriously High

001 85 78 00 63 22 75 69 20 01 07 00 00

005 91 87 01 81 51 86 80 37 09 17 00 00

01 93 90 11 85 65 91 87 50 22 33 00 00

5 02 95 93 44 90 79 95 92 60 43 49 00 00

03 95 95 69 93 85 96 94 70 53 56 00 00

04 96 96 80 94 88 97 95 76 57 65 00 00

05 97 96 86 95 92 97 96 80 62 65 00 00

07 97 97 92 97 94 98 97 86 72 72 01 00

10 98 98 95 98 96 98 98 91 80 78 04 00

Note. The maximum detection rate among the reasonably well-standardized
indices is underlined at each false alarm rate.

a.
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Table 4. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 10-30% Ability Range

False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IOV OE JK B NI

15% Spuriously High

,. 001 23 14 00 06 01 13 11 00 00 00 00 ,0G

005 37 23 00 16 05 22 17 02 u1 02 00 00

01 45 30 00 21 10 33 25 05 03 05 00 00

02 55 38 05 31 19 44 36 09 08 11 00 00
4 03 60 45 15 38 25 49 43 13 12 15 00 00

04 63 49 22 43 30 53 47 17 15 19 00 00

05 66 53 28 47 38 57 51 21 18 21 00 00

07 70 59 41 56 46 64 58 30 26 27 01 00

1 10 75 65 52 63 58 71 66 40 35 35 03 00

30% Spuriously High

001 76 56 00 45 04 61 60 01 08 17 00 00

005 85 71 04 67 15 72 72 04 22 29 00 01

01 89 75 11 73 27 81 79 08 35 43 00 01

02 92 82 34 81 40 87 86 13 52 58 00 01

03 93 86 57 86 49 90 90 18 61 64 00 01

04 94 88 68 88 56 92 92 22 65 b9 00 01

05 95 90 75 90 64 93 93 26 70 72 00 01

07 96 92 83 93 71 94 95 35 77 77 00 01

10 97 94 88 95 80 96 96 45 84 84 00
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Table 5. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IO 0,'E JK B NI

", 15% Spuriously High

001 13 07 00 04 00 09 08 00 01 02 00 00

005 26 13 00 12 00 15 14 00 05 05 00 00

01 34 18 01 15 01 ?1 20 00 08 10 00 0

02 46 24 06 23 03 32 29 00 16 17 00 00

03 51 31 13 29 05 37 35 00 21 22 00 00

04 55 34 19 33 07 42 39 01 25 26 00 uO

05 58 38 25 37 12 45 44 01 29 28 00 00

07 64 44 33 45 17 51 50 02 36 34 00 00

10 70 52 42 53 26 58 57 05 43 41 00 00
30% Spuriously High

001 59 31 01 31 00 30 38 00 11 20 00 00

005 72 45 08 47 03 41 49 00 26 31 00 03

01 78 51 15 53 07 51 57 00 38 44 00 03
02 84 59 29 63 14 59 67 00 53 58 00 03

03 87 65 44 69 19 64 72 01 60 63 00 03

04 89 68 50 72 23 68 76 01 64 67 00 03

05 91 72 56 75 30 72 79 02 68 70 00 03

07 93 77 64 81 39 76 82 04 74 75 00 03

10 95 82 71 85 49 81 87 07 79 80 00 03

-5
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Table 6. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 49-64% Range

False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI

15% Spuriously Low

001 29 06 00 03 00 04 04 00 00 01 00 00

005 43 12 01 08 00 08 07 00 01 02 00 00

01 47 16 03 11 00 14 11 00 03 06 00 00

02 56 22 09 17 02 20 17 01 09 12 00 00

03 61 27 17 21 03 24 21 02 12 17 00 00

04 63 30 24 25 05 28 26 04 15 20 00 00

05 67 35 29 29 08 32 29 06 18 23 00 00

07 71 40 37 37 13 38 35 10 23 29 00 00

10 76 49 46 44 20 46 42 17 32 37 00 00

30% Spuriously Low

001 56 19 00 09 00 09 12 01 00 01 00 uO

005 75 29 00 20 02 14 20 07 02 05 00 00

01 79 35 01 26 06 23 28 14 07 14 00 00

02 86 44 08 36 15 32 38 22 20 27 00 00

03 89 51 18 42 22 37 45 30 26 33 00 00

. 04 91 55 26 47 27 42 50 37 31 40 00 00

05 93 59 34 52 35 47 55 42 36 43 01 00

07 95 64 44 60 45 53 60 54 46 50 02 00

10 97 70 56 66 56 60 67 66 57 59 05 00
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Table 7. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 65-92% Ability Range

False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI

15% Spuriously Low

001 55 26 05 17 00 17 12 00 03 09 00 00

005 66 38 19 32 01 26 20 00 12 16 00 01

01 68 44 30 37 03 36 26 01 21 26 00 01

02 73 52 47 46 06 45 36 02 32 37 00 01

03 75 58 59 53 09 50 42 03 38 43 00 01

04 77 62 65 56 13 55 47 05 42 47 00 01

05 78 65 70 60 18 58 51 06 46 50 00 01

07 81 70 76 67 26 63 56 10 52 55 00 01

10 83 76 81 72 36 69 63 16 58 62 00 01

30% Spuriously Low

001 80 5_4 00 40 01 44 45 04 04 12 00 00

005 89 66 08 58 09 54 55 13 15 27 00 00

01 91 71 18 62 19 64 63 24 31 44 00 00

02 94 78 42 72 32 74 72 32 48 59 00 00

03 95 83 59 77 40 77 77 41 55 64 00 00

04 96 85 69 80 47 80 80 47 61 71 00 00

05 97 87 75 83 55 83 82 53 67 74 00 00

07 98 89 82 87 63 86 86 63 75 80 00 00

10 98 92 88 91 74 90 89 72 81 85 00 00
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Table 8. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from 93-100% Ability Range

False Proportion detected by

alarm

rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI

15% Spuriously Low

001 73 55 26 39 01 31 23 00 06 12 00 01

005 80 68 59 57 10 42 33 00 15 20 00 08

01 81 72 71 62 17 54 41 01 21 30 00 08

02 84 78 82 72 27 63 52 02 33 43 00 08

03 86 82 88 77 36 67 57 03 38 49 00 08

04 86 84 90 80 43 71 63 05 43 54 00 08

05 88 87 91 82 50 74 66 06 47 56 00 08

07 89 90 93 86 60 79 71 11 56 64 00 08

10 91 92 94 89 69 84 77 16 64 72 00 08

30% Spuriously Low

001 93 88 06 78 10 83 79 09 27 47 00 00

005 96 93 38 88 32 90 86 21 53 65 00 03

01 97 95 59 91 47 94 90 31 68 78 00 03

02 98 97 81 94 63 96 94 41 82 88 00 03

03 98 98 92 96 72 97 95 51 87 90 00 03

04 98 98 95 97 76 98 96 59 89 93 00 03

05 99 98 96 98 82 98 97 63 91 94 00 03

07 99 98 98 98 88 98 98 72 94 96 00 03

10 99 99 98 99 93 99 98- 80 96 97 00 03
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rate was 1%; the next best index (z,) detected only 35% of the aberrant
sample.

In Table 7, which presents the results for the 15% and 30% spuriously low
samples with es in the 65th through 92nd percentiles, the practical
appropriateness indices have detection rates that are closer to the rates of
the optimal index. This trend is continued in Table 8, which presents the
results for the spuriously low treatments applied to the highest ability
category (percentiles 93 and above). At a 1% error rate, for example, LR
detected 81% of the 15% spuriously low response patterns; z3 , F2, and T2 had
detection rates of 72%, 62%, and 54%. For the 30% treatment, the rate for LR
was 97%; z,, F2, and T2 had rates of 95%, 91%, and 94%.

Drasgow and Guertler (1987) recently presented a utility theory approach
to the use of Appropriateness Measurement in practical settings. Their
approach requires the densities of an index in normal and aberrant samples.
Consequently, normal distributions were fitted to the distributions of z,, F2,

.* and T4 by equating the first two moments of the normal distribution to the
empirical moments. These analyses were based on the first 1,000 response
vectors from the normal sample and each of the 12 aberrant samples. The
fitted means and standard deviations are presented in Table 9. As a crude
measure of fit, Kolmogorov-Smirnov test statistics were computed to compare
the empirical distributions to normal distributions with the observed moments.
No significant (a = .05) departures of empirical distributions from the
corresponding fitted normal distribution were found. As the Kolmogorov-
Smirnov test can be conservative when fitted moments are substituted into the
theoretical distribution (Massey, 1951), these results should be viewed with
some caution.

Discussion

There has been a growing interest in Appropriateness Measurement, both by
researchers and by testing practitioners. To date, however, there has been
little critical study of the various indices available. The results of the
research summarized here clearly indicate that there are important differences
in the properties of appropriateness indices. Figures 1 through 3 show that
some indices are poorly standardized (e.g., IOV), and a "standardized" index
may not be well standardized (e.g., Fl). Table 2 illustrates the problems
that are caused by poorly standardized indices.

-, A well-standardized index is not, however, necessarily a good
appropriateness index. The O/E and JK indices were shown to be reasonably
well standardized in Figures 1 through 3, but Tables 3 through 8 clearly show
them to be ineffective in detecting aberrant response patterns.

Perhaps the most impor-ant finding of the simulation reported in this
chapter is that z,, F2, and T2 provide nearly optimal rates of detection of
some forms of aberrance but inadequate rates of detection of other forms of
aberrance. In particular, these three indices have near-optimal rates of
detection when the spuriously high treatment is applied to very low ability
response vectors and when the spuriously low treatment is applied to very high
ability response vectors. Unfortunately, these indices have rates of
detection far below optimal when the spuriously high and low treatments are
applied to response vectors with nearly average auility values.

28
* . . . . . . . . . . . . . ..,



Table 9. Means and Standard Deviations of Empirical

Distributions of z,, F2, and T4

Severity of aberrance

Aberrance Ability 15% 30%

manipulation range Z3 F2 T4 z' F2 T4

Spur. High 0-9% -2.32 1.28 1.56 -4.00 1.49 3.22

(1.13) (0.14) (0.94) (1.22) (0.15) (1.07)

Spur. High 10-30% -1.85 1.23 1.39 -3.32 1.43 3.04

(1.11) (0.14) (0.98) (1.19) (0.15) (1.10)

Spur. High 31-48% -1.38 1.19 1.22 -2.47 1.36 2.38

(1.03) (0.14) (1.02) (1.21) (0.17) (1.19)

Spur. Low 49-64% -1.02 1.13 0.65 -1.58 1.19 1.20

(1.03) (0.13) (0.99) (1.14) (0.14) (0.98)

Spur. Low 65-92% -1.85 1.23 1.17 -2.74 1.34 2.12

(1.16) (0.16) (1.11) (1.19) (0.15) (1.08)

Spur. Low 93-100% -3.01 1.37 1.78 -4.28 1.54 3.50

(1.30) (0.17) (1.14) (1.32) (0.17) (1.24)

Normalsa 0-100% 0.09 0.99 -0.14

(0.97) (0.12) (0.86)
4,

Note. Means and standard deviations are based on samples of N = 1000.

Standard deviations are in parentheses.

aTo conserve space, results for the normal sample are listed under the

columns for the 15% severity of aberrance.
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These results indicate that we need to devise new indices that are more

powerful than z,, F2, and T2 for examinees whose abilities are near average.
We expect that it may be necessary to construct two indices: one for

spuriously low response patterns and one for spuriously high response
patterns. This psychometric necessity would be quite useful for practitioners
because it would allow them to diagnose the cause of aberrance in addition to
detecting aberrant response patterns.

III. POLYCHOTOMOUS ANALYSIS OF THE ARITHMETIC REASONING TEST:

AN APPLICATION OF MULTILINEAR FORMULA SCORE THEORY

Introduction

Multilinear formula score theory or multilinear formula scoring (MFS;

Levine, 1983, 1985a, 1985b) is a nonparametric IRT for which consistent and

asymptotically efficient estimators of ability densities, item characteristic

curves (ICCs), and option characteristic curves (OCCs) have been derived and

programmed. MFS provides a powerful new approach to substantive questions of

long standing. These questions include determining the shapes of ability

distributions and the magnitudes of differences among ability distributions of

various groups, determining the shapes of item characteristic curves for

unidimensional and multidimensional tests, identifying biased and other faulty

items, and assessing the extent to which two tests measure the same ability.

In the research reported this chapter, we used three-parameter logistic

ICCs to model the way in which examinees respond to correct options of AR

multiple-choice items and, simultaneously, we used MFS to model responses to

the incorrect options. Thus, we replaced the crude "histogram model" of

Chapter II with a theory-based approach. Consequently, low rates of detection
of inappropriate response patterns cannot be attributed to an unsophisticated
analysis of the data.

Prior to determining rates of detection of spuriously high and low

response patterns, we examined MFS's ability to estimate option response

curves. The results of this analysis were assessed graphically and by
determining the increase in information about ability due to polychotomous
scoring of item responses. The term "information" is used in its statistical
sense to mean the expected squared derivative of the logarithm of the
likelihood function. Since the asymptotic standard error of the maximum
likelihood estimate of an ability 0 equals the square root of the reciprocal
of the information function at 0, an increase in information due to
polychotomous scoring is readily translated into percent test length reduction

made possible by polychotomous scoring.

We also compared the dichotomous and polychotomous item response models'

potentials for supporting Appropriateness Measurement. Of course, the model-

based detectability of a particular type of aberrance depends upon the item

response model used to analyze the data; more specific (polychotomous) models

are expected to be rejected more frequently when fitted to aberrant response

patterns and thus provide superior appropriateness measurement. By combining

the optimal appropriateness index results of Levine and Drasgow (1984, 1987)
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with MFS's ability to accurately recover the option characteristic curves
needed for polychotomous modeling, we determined whether polychotomous
modeling was negligibly or markedly superior to dichotomous modeling in
detecting test anomalies.

This chapter also contributes to formula score theory in that it provides

a verification of MFS theoretical results with simulation data.

Review of Multilinear Formula Score Theory

This section contains a review of MFS theory as it is used in this paper.
The theory is more general than outlined here, but for the sake of clarity, we
will describe only the special case required for the present research.

Let u. denote the response to the ith item of an n item test scored u.

1 if correct and u. 0 if incorrect. The ui generate the elementary formula

scores, which can be enumerated as

-- n

1w2 P u .
--n 1-n

Traditional formula scoring (Lord & Novick, 1968, Chapter 14) generally
uses only linear scores. When there is neither omitting nor polychotomous
scoring, linear formula scores are formulas with a constant term plus a linear
combination of the binary item scores, u1 , u2 , ..., u . (When there is

. omitting and polychotomous scoring, a linear score is a constant plus a linear
combination of binary variables indicating omitting and option choice.)

•-A Multilinear formula score theory generalizes traditional formula score
theory by using quadratic scores (linear scores added to linear combinations
of U1U2, U1U3' " n u n ), cubic scores (quadratic scores plus linear

combinations of products of item scores for three different items), and higher
order scores. Most of the results in this chapter were obtained with fifth
order scores. The new theory is called "multilinear" because frequent use is
made of the fact that when all the scores except one are held constant, a
"linear" score is obtained.

In this chapter, as in Chapter II, we assume that the regression of u on

the latent trait 0 is a three-parameter logistic ogive. By local
Saindependence, the regressions of the elementary formula scores on the latent

trait can then be written as

.31
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-a

: El( )-t2(t) ... (-t) ,

where t is used to denote a specific value of e.

There are 2n regression functions listed above. More can be generated by
taking linear combinations of the elementary formula scores and then computing
their regressions on the latent trait. For example, the number-right score

+ + + n

has the regression

n
E(X I t) E P.(t)

'." i=1

/z The collection of regression functions of all linear combinations of
elementary formula scores is called the canonical space (CS) of a test.

A major step in an MFS analysis of a test consists of finding a smaller
number of functions to represent the large number (in fact, an infinite
number) of functions in the canonical space. The smaller collection of
functions is called an orthonormal basis for the canonical space.

Selecting an orthonormal basis for the canonical space is analogous to
finding the principal components of a set of variables. In a principal
components analysis, the basic idea is to create a new set of variables, the
principal components, so that each of the original variables can be written as
a linear combination of the principal components plus a small residual. A
principal components analysis is valuable when there is a large number of
original variables and the first few principal components explain almost all
of their variance. In the same way, functions in the canonical space are
written as linear combinations of the orthonormal basis functions. For
example, the ICC for the ith item can be written

-a K
P P.(t) = E a h (t)

1 k=1 k-k

where K functions, denoted h(t) ... , _h(t), are used in the orthonormal

basis and the ak are the weights used in the linear combination. If K is

sufficiently large, this representation is exact. If only the first J
functions are used, instead of all K functions (where J is less than K), then
there is some error. However, the residual

J K
Pi(t) - E akhk(t) E a h(t)

k=1 J+1
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will be small if the ak are small for values of k larger than J. In fact, the

area under the squared residual is exactly a2+ a 2 + + a 2

area+ "J+e2 "K

In each MFS analysis, a parsimonious representation of one or another
collection of functions in the CS is important. MFS provides techniques that
yield basis functions that give small values of ak for large values of k, at

least for the collection of functions being analyzed. Most MFS analyses
require six to eight basis functions for an adequate representation of the
functions being studied.

To recapitulate, the analysis begins by estimating ICCs from the
dichotomously scored item responses. Widely available programs such as LOGIST
(Wood, Wingersky, & Lord, 1976) and BILOG (Mislevy & Bock, 1983) can be used
to this end. The estimated ICCs and the assumption of local independence are

subsequently used to define the canonical space. Then a small number of
orthonormal basis functions are selected so that the functions in the
canonical space are well approximated by linear combinations of the
orthonormal basis functions.

The next step of the MFS analysis is to determine weights for the
orthonormal basis functions so that option characteristic curves (OCCs) can be
written as linear combinations of the h is. Since OCCs were not included in

the set of functions used to define the canonical space, we must address both
the mathematical question of how best to approximate the OCCs by basis
functions and the substantive question of whether or not the basis functions

can adequately approximate OCCs. The OCC analysis proceeds item-by-item, with
the weights for all the options (including omit as an option) to each item
simultaneously estimated by the method of marginal maximum likelihood. The
log likelihood that is maximized with respect to the weights is

N
L = E log (uJ, v ), (17)

where u is a vector containing the dichotomously scored item responses of the

,jth examinee and vi indicates the particular option on item i selected by

examinee j. For a four-option multiple-choice item, vii 1 if option A is

selected, ..., vii = 4 if option D is selected, and v- : 5 if no response is

made. Suppose all the items are recoded such that option A is always the
correct response. Then Equation 17 can be rewritten as

N
L E: log P(u.) +

J=1

V* =1
ij
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N/
E log L(uj I t) P(v I t, uij:O)f(t)dt (18)

J=1 ij

v $I

where

n u. 1-u.
P(u I t) = [ P ( t) J[1 - P (t)] (19)

P(v I t, u 0) E akh_(t) , (20)

-ij - j k-1 ikt

and f(t) is the ability density. Notice that Equation 19 is the likelihood
function for the three-parameter logistic model [i.e., Lord's (1980) Equation
4-20 and Hulin et al.'s (1983) Equation 2.6.2). It is the aks in Equation 20

that are to be estimated. Actually, each option has its own set of J a ks, but

to avoid notational complexity, we have not added another subscript to the,2 kS.

It is important to observe that local independence is not used to derive
Equation 18 from Equation 17; only the definition of conditional probability
is used. Thus, even when skipping items or not reaching items (response "5")
fails to obey the assumption of local independence, an accurate estimate of
the conditional probability of non-response for examinees at each ability
level is obtained.

Quadratic programming methods are used to obtain maximum likelihood
estimates of orthonormal basis function weights for conditional option
characteristic curves (COCCs) in Equation 20. A COCC equals its associated
OCC divided by [1-P.(8)]; hence, the COCCs for an item sum to 1 for all 0

values. The OCCs for an item, in contrast, sum to [1-Pi()), which becomes

very small as P.(9) approaches 1. The weights ak for the COCCs are easier to-1

estimate than the weights for OCCs since the OCCs for easy items and for
rarely chosen options are close to 0, which causes the ak to become

indeterminant; COCCs are not usually close to 0. Because the OCC at 8 = t is
equal to the COCC multiplied by I - P.(t), the OCCs are available after the

COCCs have been obtained. The COCCs are intrinsically interesting as well as
mathematically tractable since their shapes can be used to study the
properties of effective distractors.

The quadratic programming methods used by Levine and Williams (1985) are
'5 convenient because they allow plausible constraints to be placed on the COCCs.

One constraint is positivity: COCCs are not allowed to become negative. In
the present analyses all COCCs were required to equal or exceed .001. A
second constraint placed on COCCs is smoothness: The COCCs were not allowed
to oscillate widely. The smoothness constraint was implemented by restricting

%
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the third derivative of the COCCs to be less than .uu5. This condition can ne

thought of as requiring each small piece of the graph of the COCC to nave a
very accurate quadratic approximation. (A restriction on the second
derivative would force the COCC to be locally linear, dnd a Cirst derivative
constraint would force the COCC to be locally constant.)

Estimation and Information

Data set. The data set used in our analyses was a spaced sample of 2,978
examinees taken from the National Opinion Research Center (NORC; Bock &
Mislevy, 1981) sample of American youths. These examinees answered the 30-
item ASVAB Arithmetic Reasoning (AR) subtest. Each item on this test has four
options.

* [CC estimation. The first step in the MFS analysis was to estimate
ICCs from the dichotomously scored item responses. To this end, the item
responses of the examinees described above were scored dichotomously. All
nonanswered items were scored as incorrect (since we treated omits as a
separate--and incorrect--response option). Then version 2B of LOGIST (Wood
et al.,1976) was used to estimate item and ability parameters. Estimates of
item discrimination parameters ranged from about 0.5 to 2.0, and estimates of
item difficulties varied from about -3.0 to 1.4 (mean = .14, SD = .99).

Density estimation. The ability density f shown in Equation 18 was
estimated by the nonparametric method developed by Levine and Williams (1985).
The density was represented as a linear combination of basis functions, and
the weights were estimated by maximum likelihood. The weight vectors were
restricted to a convex set determined by hypotheses about the shape of the
unknown density. After experimenting with various shape hypotheses, the
following conditions were selected. The density was constrained to be
nonnegative; to have a nonnegative second derivative between -4.8 and -3.1; to
have a nonpositive second derivative for abilities between -.3 and 1.0; to be
monotonically increasing for abilities between -3.1 and -.3; and to be
monotonically decreasing for abilities between 1.0 and 3.5. These conditions
imply that the density will be unimodal between -3.1 and 3.5, that the mode
will occur between -.3 and 1.0, and that the density will either decrease to a
lower asymptote as ability decreases to -5 or will have a second mode in the
left tail if such is indicated by the data. It was decided to allow a second
maximum at very low abilities because the data seemed substantially better fit
when bimodality was permitted. A substantive interpretation of bimodality is
noted below.

After some preliminary analyses, we decided to remove examinees who
answered less than half of the items. There were 87 such examinees, leaving

U2,891 examinees for the density and COCC estimation.

Figure 4 shows the obtained density. It can be seen that the density is
roughly bell-shaped, with a mode near 0. The left tail turns up at low
abilities, suggesting a relatively large number of examinees with very low
abilities. One substantive interpretation of this fat left tail is that even
among examinees who answered more than half of the items there may have been
some who were poorly motivated and did not make a serious attempt to pass the

examination. In fact, examinees were paid to take the examination and
consequently some of them may not have been adequately motivated. The test
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information function at 6 = -5 is very low; consequently, Dimodality cannot be
established unequivocally without much larger samples.

COCC estimation. Four COCCs were estimated for each item: the three
incorrect response curves and an omit curve. Omits included both skipped
responses and not-reached responses. The number of orthonormal basis
functions used in the analysis was 10. Thus, 30 weights (10 weights for each
of three COCCs) were estimated for each item. The weights for the fourth COCC
were a known linear combination of the weights for the other three (Levine,
1985b).

Appendix A contains plots of the COCCs estimated for all 30 AR items.
The solid curves indicate the estimated COCCs. Each page in Appendix A
contains the four COCCs for two items. For example, the first page of
Appendix A has the COCCs for item I plotted in the four panels to the left;
the four panels to the right contain COCCs for Item 2 of the AR subtest. For
each item, the top left panel contains the COCC for the first incorrect
option; the top right panel, the COCC for the second incorrect option; the
bottom left panel, the COCC for the third incorrect option; and the bottom
right panel, the omit COCC.

The goodness-of-fit of the estimated COCCs can be evaluated by examining
the vertical lines displayed in each panel. These lines were obtained by
computing three-parameter logistic ability estimates for all 11,914 examinees
in the NORC data set, forming 25 ability strata on the basis of estimated
abilities by using the 4th, 8th, ... , 96th percentiles of the standard normal
distribution as cutting scores, and then computing, from among the subset of
examinees who answered the item incorrectly, the proportion of examinees
selecting each option. The centers of the vertical lines correspond to the

.r.. observed proportions and they are plotted above the category medians (the 2nd,
6th, ... , 98th percentiles of the standard normal distribution). The vertical
lines represent approximate 95% confidence intervals for the observed
proportions (± two standard errors, where the observed proportion is used to
compute the standard error). Observed proportions of 0 and I are plotted as
plus signs and are offset slightly from their true locations so that they will
be visible.

The AR items seem to be more-or-less ordered by difficulty.
I., Consequently, the 95% confidence intervals for the first few items in Appendix

A are very wide because these items are easy and so few examinees chose
incorrect options. Confidence intervals for lat-er items are much narrower and
provide a severe test for COCC estimates. Item 27, for example, shows that
the COCC estimates provide a very good description of option choice. Notice
that the COCC for the omit category lies below most observed proportions.
This occurs because examinees with high omitting rates were excluded from the
sample used to estimate COCCs, but were included in the total sample used to
compute the proportions displayed in Appendix A.

COCC estimation verification. The figures presented in Appendix A show
that MFS estimates of COCCs closely follow the actual patterns of item
responses. It is difficult, however, to understand the accuracy of COCC
estimates from these figures because the true COCCs are not known. To gain
further insights into the properties of MFS estimates of COCCs, a simulation
data set of 3000 response patterns was generated. Simulated aoilities were
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sampled from the standard normal distribution, probabilities of correct 4nd
incorrect responses were determined from the ICCs obtained by the LOGIST run

described previously, and probabilities of option selections (for responses
simulated to be incorrect) were computed using the MFS-estimated COCCs.

COCCs were re-estimated from the simulation data set. The true ability

density (the standard normal) was used in Equation 18, and the true ICC values
were used to compute probabilities of correct and incorrect responses. The

true ability density and ICC values were used because we wanted to determine
the errors of COCC estimates in a way that was not confounded with
inaccuracies in density estimates and ICC estimates.

The results of the simulation study are shown in Appendix B, which
presents the re-estimated COCCs for all 30 items. Heavy lines indicate the
re-estimated COCCs and thin lines indicate the true COCCs. Observed
proportions and their approximate 951 confidence intervals are shown for the

simulation sample of N = 3,000. The observed proportions were not plotted it'
five or fewer incorrect responses were made in an ability stratum.

Item 2 shows estimated COCCs that are very close to the true COCCs for

all ability levels. This is remarkable because there were almost no incorrect
responses made by simulated examinees with above-average ability. Item 3

shows that we cannot always expect to have well-estimated COCCs when there are
no data available: Large diffences between true and estimated COCCs occur at
high ability levels. The COCCs were, however, accurately estimated in ability

ranges for which there were more than a handful of incorrect responses.

From an inspection of the plots in Appendix B, it seems evident that COCC
values were accurately estimated when there were six or more incorrect
responses in adjacent ability strata. Sometimes COCC values were well-

estimated when fewer incorrect responses were available, but this seemed to be
a matter of chance. Notice, also, that COCCs for the omit option were not
underestimated in this analysis as they were in the analysis of the real AR
data. In this analysis, all response vectors were used; there was no
restriction on omitting as in the previous analwsis.

Information functions. Information functions for the dichotomous and

polychotomous modelings of the AR test are shown in Figure 5. An expression

for the information function of the three-parameter logistic model is

, . - 't[ P ( t ) ] 2  [ Q ' ( 0 ) 2

Information at t = E -i I E L (21)
SP(t)Qi(t)

where Q. I - P. and P' and are the first derivatives of P and

Q" The information function of the polychotomous model is

[PIt)]2 P' It)]2

Information at t : E - E -o -- - (22)
i Pi j:2 fij(t )
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where P is the OCC for option .1 on item i and P' is its first

derivative. The correct option makes the same contribution to information for
both the dichotomous and polychotomous scorings; namely, the first term on the
right sides of Equations 21 and 22. Thus, any differences in information are
entirely due to the treatment of incorrect responses. Although it is not
obvious from Equations 21 and 22, it can be shown that the information
function for the polychotomous model equals or exceeds the three-parameter
logistic model's information function. Thus, any increase in information is
entirely due to polychotomous scoring.

Figure 5 shows that there are moderate gains in information due to
polychotomous scoring of the AR items for low to moderately high abilities.
These gains are equivalent to adding about 5 or 6 items to the subtest.
Little or no information is gained for high ability examinees. This latter
finding is not surprising because high ability examinees are expected to
answer nearly all the items correctly.

It should be noted that the AR items were not written with polychotomous
scoring in mind, and so the gains in information shown in Figure 5 are more-
or-less fortuitous. Larger gains might be realized if item writers knew the
attributes of incorrect options that typically lead to substantial increases
in information.

Appropriateness Measurement for the AR Subtest

Purpose

This section compares the effectivenesses of dichotomous and
polychotomous models for detecting aberrant responses patterns. By comparing
detection rates of optimal indices, it is possible to compare the maximum
detection rates possible for a given form of aberrance. As in the previous
section, the dichotomous model is a submodel of the polychotomous model;
hence, any increase in detection rates is due to modeling incorrect responses.

Several practical indices were also evaluated. Most of these indices are
computed from the dichotomously scored item responses. One index, however, is
the natural extension of a dichotomous model index to the polychotomous case.
Detection rates for the practical indices will indicate (a) which are
relatively more powerful and less powerful, and (b) the extent to which the
maximum detection rates are attained.

Overview

The ICCs and OCCs estimated for the AR subtest from the sample of
N = 2,891 were used as the "true" item parameters in a simulation study.
Initially, a sample of N = 3,000 simulated response patterns was created and
used as a test norming sample. This data set was used to determine the item
and test statistics required to compute all but two (zp and DFK) of the

practical appropriateness indices listed in the next section. Then a normal
sample (appropriate responding) of N = 4,00 response vectors was created. In
addition, 16 aberrant samples of N z 2,000 were generated to simulate several
forms of aberrance. Optimal indices and all the practical indices were then
computed for the normal sampie and aberrant samples. Hates of detection of
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aberrant response vectors at various false alarm rates were determined for

each appropriateness index and each form of aberrance.

Appropriateness Indices

This section lists the appropriateness indices that are evaluated.
Technical details about the indices are given in Chapter 2.

Polychotomous model optimal index (LR p). Denote the polychotomously

scored response vector by v. The polychotomous model optimal index studied
here is

LRP P (V) / P (V)
p -Aberrant -Normal

where the probabilities are computed using three-parameter logistic ICCs to
determine conditional probabilities of correct responses and MFS OCCs to
determine conditional probabilities of incorrect responses.

Dichotomous model optimal index (LR3 ). This index is identical to LR

except that only the pattern of correct and incorrect responses u is used in
* . its calculation. This class of indices, therefore, provides the highest rate

of detection when the choice of incorrect option is ignored.

Dichotomous model optimal index computed using estimated item parameters

(LR;). For optimal indices to be truly optimal, they must be computed using

item parameters -- not item parameter estimates. In previous work (Levine &
Drasgow, 1982), we found that the values of some appropriateness indices were

- almost unaffected when item parameter estimates were used in place of item
parameters. In the present research, we also computed optimal indices for the
three-parameter logistic model using estimated item parameters.

Dichotomous and polychotomous model standardized Q, (z3 and z p). In

Chapter II, z, was discussed; z is the generalization of z, to the case of a. ' p

polychotomous analysis of the item responses.

Fit statistics (F1 and F2). (Discussed in Chapter II.)

Caution indices (S, T2, and T4). (Discussed in Chapter II.)

Item-option variance (IOV). (Discussed in Chapter II.)

Likelihood function curvature statistics (JK and O/E). (Discussed in

Chapter I.)

Deliberate failure key (DFK). The final index evaluated is the
- DFK developed by the Navy Personnel Research and Development Center (Swanson F Poley,

1982) to detect individuals who are deliberately attempting to obtain low

scores. Although DFK was developed for the AFQT composite, we used the key
for the AR subtest only.

..i-. - ....•
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Method

*. Data Sets. A test norming sample of 3,000 response vectors was created
by sampling 3,000 numbers (0s) from the normal (0,I) distribution truncated to
the [-5.0, 3.51 interval. A normal sample of 4,000 response vectors was also
generated in this way. Then 2,000 aberrant response vectors were created in
each of 16 conditions. These conditions resulted from varying three factors:
the type of aberrance (spuriously high; spuriously low), the severity of
aberrance (mild; moderate), and the distribution from which simulated
abilities were sampled.

Eight of the aberrant samples contained spuriously high response vectors,
and the remaining eight samples contained spuriously low response vectors.
Spuriously high response patterns were created by first generating normal
response vectors (using the AR three-parameter logistic ICCs to determine the
probabilities of correct responses, and the AR COCCs to determine the
probabilities of incorrect option selection) and then replacing either 17%
(mild aberrance) or 33% (moderate aberrance) of the simulated responses
(randomly sampled without replacement) with correct responses. Spuriously low
response patterns were also created by first generating normal response
vectors. Then 17% or 33% of the items were randomly selected without
replacement and the responses to these items replaced with random responses
(i.e., a response was replaced by option A with probability .25, by option B
with probability .25, ..., and by option D with probability .25).

The third variable manipulated was the ability level of the aberrant
sample. Abilities for the spuriously high samples were sampled from four
parts of the normal (0,1) distribution truncated to [-5.0, 3.51: very low
(Oth through 9th percentiles), low (10th through 30th percentiles), low
average (31st through 48th percentiles), and high average (49th to 64th
percentiles). In all cases, percentiles were determined after the truncation.
Abilities were sampled from four average to high ability strata for the
spuriously low samples: low average (31st to 48th percentiles), high average

(49th through 64th percentiles), high (65th through 92nd percentiles), and
very high (93rd percentile and above).

Analysis. The analysis followed the procedure described in Chapter I.
All the item and test statistics required to compute the practical
appropriateness indices were computed using the test norming sample. LOGIST
(Wood et al., 1976) was used to estimate three-parameter logistic item
parameters and a Fortran program was written to compute the other quantities
required.

The practical appropriateness indices and LR; were then computed for
the response vectors in the normal and aberrant samples. Optimal indices were
also computed for the normal sample for four aberrant conditions: 17%
spuriously high, 33% spuriously high, 17% spuriously low, and 33% spuriously
low. The 17% spuriously high optimal index was computed for the four samples
with this form of aberrance, the 33% spuriously high optimal index was
computed for the four samples with this form of aberrance, etc. The ICCs and
COCCs used to generated the data were used to compute LR and LR,.

p
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Results

The results for the spuriously high conditions are given in Tables 10
through 13. The results for the lowest ability group are shown in Table 10.
In this table, it is evident that cheating on five randomly selected items was
not very detectable: At a 2% false alarm rate, only 28% of the simulated
cheaters were detected by the optimal LR index. The best of the practical

indices, z, and F2, detected 18% and 20%, respectively. (The higher detection
rate of IOV resulted because this index is poorly standardized; see Chapter
II.) Cheating on 10 items (the 33% condition) was reasonably detectable. For
example, LR detected 61% and LR, detected 54% at a 2% false alarm rate. At

this false alarm rate, z,, F2, and T4 detected 44%, 41%, and 50%,

respectively.

The detection rates of the optimal indices showed a relatively small

decline from Table 10 to Table 11. At a 2% false alarm rate, LRp, for

example, declined from 28% to 26% for the 17% spuriously high treatment and
from 61% to 53% for the 33% treatment. Most of the practical indices showed
larger declines in detection rates. This trend continues in Table 12.

Finally, in Table 13, it is evident that simulated cheating on the AR
subtest was almost undetectable for high average examinees. In contrast,
Drasgow et al., (1985) found moderate detection rates for simulated cheaters
with comparable abilities for the SAT-V. A significant difference between the

two tests lies in the frequency (and relative frequency) of difficult (b,

1.0), discriminating (a > 1.0) items with low lower asymptotes (c < .10).
Seventeen of the 85 SAT-V items satisfied these three conditions. In
contrast, none of the 30 AR items met these conditions and only three items

* had b. > 1.0. In sum, high average examinees had a reasonably good chance of

responding correctly to each AR item; socorrect responses obtained by
cheating were not clearly aberrant.

S<" The results for the spuriously low samples are given in Tables 14 through
17. In Table 14, it is evident that 33% spuriously low responding by
simulated low average examinees was moderately detectable by LR (a 30%

p
detection rate with 2% false alarms) but not by any of the other
appropriateness indices. Higher detection rate. were obtained for simulated
high average examinees (shown in Table 15). Again, LR performed

P
substantially better than any other index. High rates of detection of
simulated high and very high examinees are shown in Tables 16 and 17. LR was

p
clearly the best index, with detection rates of 72% and 81% for a 2% false

alarm rate in the 33% spuriously low treatment.

.V.
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Table 10. Selected ROC Points for Spuriously High

Response Patterns Generated from the 0-9% Ability Range

False Proportion detected by

alarm

rate LR LR, LR; z z, F1 F2 S T2 T4 IOV JK O/E DFK

17% Spuriously High Treatment

.001 04 04 01 A0 03 00 01 00 00 01 10 00 00 00

.005 11 12 11 03 06 00 08 00 04 04 16 02 02 00

.01 16 19 17 05 12 02 13 03 07 06 23 03 04 03

.02 28 29 26 08 18 04 20 12 13 11 37 06 07 03

.03 34 33 30 11 25 07 24 18 18 14 45 09 09 12

.04 38 37 34 13 29 10 28 24 22 18 52 13 12 12

.05 43 40 38 15 33 15 32 27 26 22 57 15 14 12

.07 48 45 44 19 41 24 40 37 32 26 64 22 19 12

.10 52 50 49 26 51 36 50 49 42 33 71 29 25 28

33% Spuriously High Treatment

.001 23 24 17 02 10 00 04 00 06 12 27 00 00 00

.005 40 33 27 07 25 00 15 00 28 27 37 00 04 00

.01 45 45 43 12 30 01 27 06 37 34 49 00 09 01

.02 61 54 52 17 44 05 41 17 50 46 66 01 17 01

.03 67 59 58 22 50 16 47 24 60 52 73 02 24 01

04 71 64 63 25 56 23 55 32 65 57 80 03 37 01

.05 72 67 66 31 62 30 59 37 69 61 83 03 37 01

.07 77 71 70 37 66 42 68 47 74 67 84 07 47 01

.10 81 75 75 46 75 57 76 60 81 73 92 19 57 17
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Table 11. Selected ROC Points for Spuriously High

Response Patterns Generated from the 10-30% Ability Range

False Proportion detected by

alarm

rate LR LR, LR; z z, F1 F2 S T2 T4 IO JK O/E DFK
P P

17% Spuriously High Treatment

.001 02 01 00 00 02 00 00 00 00 01 04 00 00 00

.005 09 07 07 01 05 00 03 00 05 04 07 00 01 00

.01 14 14 14 04 09 00 06 00 07 07 13 00 03 00

.02 26 25 22 06 14 01 11 04 14 12 24 01 05 00

.03 31 29 29 08 19 03 14 06 20 16 31 02 07 03

04 34 33 33 10 23 06 18 10 24 20 39 02 10 03

.05 40 36 37 12 27 09 21 12 27 23 43 03 14 03

.07 46 43 43 16 34 14 27 18 33 28 51 06 20 03

-p .10 52 50 51 23 43 24 37 28 42 34 61 14 27 12

33% Spuriously High Treatment

.001 16 16 13 00 04 00 00 00 03 09 10 00 01 00

.005 31 27 23 03 14 00 07 00 20 23 17 00 06 00

.01 37 40 39 05 20 00 15 01 28 29 26 00 10 00

.02 53 50 50 08 30 03 27 06 42 41 40 00 20 00

.03 61 56 57 12 37 08 34 10 51 47 47 00 27 01

.04 65 63 62 14 42 12 42 16 58 53 56 00 34 01

.05 68 66 65 19 49 17 46 20 62 58 61 00 40 01

.07 73 70 70 25 54 28 56 29 67 63 68 05 51 01

.10 78 74 75 33 64 44 67 41 74 70 75 18 60 06
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Table 12. Selected ROC Points for Spuriously High

Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by

J "." alarm

rate LR LR, LR; z z, F1 F2 S T2 T4 IO JK O/E DFKp P

17% Spuriously High Treatment

.001 00 00 00 00 01 00 00 00 00 01 00 00 00 00

.005 03 03 04 00 03 00 01 00 04 04 01 00 00 00

.01 06 07 08 02 06 00 02 00 06 06 04 00 01 00

.02 15 15 14 03 09 00 05 00 12 12 08 00 05 00

.03 20 19 19 05 14 03 07 02 17 15 12 00 08 00

.04 24 23 24 06 17 06 10 03 21 18 17 00 10 00

.05 29 26 28 07 20 07 13 04 23 22 20 00 13 00

.07 36 34 35 10 25 12 18 07 29 26 26 01 20 00

.10 43 42 43 15 33 18 26 12 36 32 35 07 29 06

331 Spuriously High Treatment

.001 06 10 07 00 02 00 00 00 02 06 01 00 01 00

.005 17 16 14 01 07 00 03 00 12 16 03 00 05 00

.01 22 27 26 02 10 O0 08 O0 18 22 05 O0 08 O0

.02 39 36 37 04 17 04 16 02 27 32 11 00 17 00

.03 48 43 45 05 22 08 21 05 36 38 15 00 23 00

.04 53 51 49 07 27 12 27 07 41 43 16 00 29 00

I. .05 56 55 54 09 33 16 31 09 45 47 21 00 34 00

.07 63 61 61 13 37 23 40 14 50 53 25 07 44 00

.10 71 67 68 20 46 36 51 22 59 60 31 19 53 03

W
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Table 13. Selected ROC Points for Spuriously High

Response Patterns Generated from the 49-64% Ability Range

False Proportion detected by

alarm

rate LR LR, LRI z z, F1 F2 S T2 T4 IOV JK O/E DFK

*17% Spuriously High Treatment

N- .001 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.005 00 00 01 00 01 00 00 00 02 03 00 00 00 00

.01 02 01 03 00 03 01 01 00 04 04 00 00 00 00

.02 07 06 07 01 05 01 03 00 07 08 01 00 00 00

.03 11 09 11 01 08 04 04 00 11 11 02 00 06 00

.04 14 13 14 02 10 06 07 01 14 14 03 00 09 00

.05 18 16 17 03 13 08 08 01 16 17 04 00 12 00

- .07 25 23 24 06 17 11 13 03 20 21 07 01 17 00

. .10 33 30 34 09 23 16 19 05 26 27 11 07 24 03

33% Spuriously High Treatment

.001 01 02 01 00 00 00 00 00 00 02 00 00 00 00

.005 05 04 03 00 03 01 01 00 05 07 00 00 01 00

.01 08 10 11 00 04 02 04 00 07 10 00 00 02 00

.02 19 16 18 01 07 07 08 01 12 17 01 00 06 00

.03 28 23 25 02 10 11 11 02 16 20 01 00 08 00

.04 34 32 32 03 12 14 15 03 20 25 03 00 11 00

.05 37 37 36 05 16 17 17 04 23 29 04 00 14 00

.07 48 45 46 08 19 23 23 07 28 35 05 03 20 00

.10 60 55 56 13 25 31 31 12 35 40 10 11 28 01
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Table 14. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by

* alarm

rate LR LR, LR z z, F1 F2 S T2 T4 IOV JK O/E DFK
P p

17% Spuriously Low Treatment

.001 01 00 00 00 00 00 00 00 00 00 00 00 00 00

.005 05 01 01 03 02 00 01 00 02 02 01 00 00 00

.01 09 03 03 05 04 01 02 00 03 03 03 01 01 01

.02 15 06 07 08 07 02 04 00 06 07 06 01 02 01

.03 18 10 12 12 10 04 05 01 09 09 08 02 03 06

.04 21 14 15 14 13 07 07 03 12 12 12 03 05 06

.05 24 17 18 15 15 10 09 04 14 14 14 05 07 06

.07 29 22 23 21 19 17 12 07 18 17 20 07 10 06

.10 35 28 28 27 26 25 17 11 23 22 26 12 14 20

33% Spuriously Low Treatment

.001 07 01 01 01 02 00 00 00 00 01 02 00 00 00

.005 14 03 04 07 05 00 04 00 03 04 04 01 01 01

.01 22 08 09 12 10 02 07 00 05 07 07 02 01 01

.02 30 14 16 18 15 05 11 03 09 11 13 04 03 01

.03 36 20 22 23 20 09 13 06 14 15 18 07 04 16

.04 41 24 26 27 23 13 17 10 16 19 23 10 06 16

.05 45 29 30 31 26 17 19 11 19 22 27 13 07 16

.07 51 36 37 36 32 27 24 17 22 27 32 17 11 16

.10 59 44 44 44 38 36 31 25 29 33 41 24 16 37
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Table 15. Selected ROC Points for Spuriousiy Low

Response Patterns Generated from the 49-64% Ability Range

False Proportion detected by

alarm

rate LR LR3  LR; z, F1 F2 S T2 T4 IOV JK O/E DFK

17% Spuriously Low Treatment

.001 07 00 00 00 01 00 00 00 00 01 00 00 00 00

.005 16 04 04 04 03 00 00 00 03 03 01 00 00 00

.01 20 07 07 07 06 00 02 00 05 05 02 00 01 00

.02 26 14 13 11 09 03 04 00 10 08 06 00 02 00

.03 28 19 18 14 14 08 06 01 14 11 09 00 03 01

.04 31 24 21 16 16 13 08 02 17 14 13 00 05 04

.05 35 27 24 20 19 17 09 02 21 17 15 01 07 04

.07 39 31 29 25 24 24 13 05 25 21 20 01 13 04

.10 44 38 34 33 32 30 20 19 31 27 28 06 18 17

33% Spuriously Low Treatment

.001 16 02 04 01 04 00 00 00 01 03 02 00 00 00

.005 25 07 11 12 09 00 03 00 08 08 05 00 00 00

.01 33 13 20 18 15 01 07 00 12 11 08 00 00 04

.02 40 19 27 26 21 06 11 02 19 18 17 01 00 04

.03 46 20 34 32 27 14 14 05 24 22 23 02 00 14

.04 50 29 38 36 30 22 18 08 27 27 29 03 07 14

.05 53 34 42 39 33 28 20 10 30 30 33 03 09 14

.07 59 40 47 46 39 38 26 16 34 35 38 05 15 14

.10 66 46 53 55 46 44 34 23 43 42 47 12 21 34

I,
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Table 16. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 65-92% Ability Range

False Proportion detected by

alarm

rate LR LR, LR', z, F1 F2 S T2 T4 IOV JK O/E DFK

17% Spuriously Low Treatment

.001 20 05 04 00 02 00 00 00 01 02 00 00 00 00

.005 30 17 16 05 07 03 02 00 08 07 00 00 00 00

.01 34 24 22 08 13 08 06 01 12 10 02 00 00 00

.02 41 30 30 14 20 20 12 04 19 17 04 00 00 00

.03 43 34 33 19 26 28 15 06 24 20 05 00 06 01

.04 46 38 36 23 28 32 20 10 28 24 08 00 09 02

.05 49 40 39 26 31 36 22 12 31 27 10 00 12 02

.07 52 43 43 33 37 41 28 17 35 32 14 03 18 02

.10 56 49 49 43 45 46 38 22 43 38 20 10 24 09

33% Spuriously Low Treatment

.001 38 14 17 03 15 00 01 00 08 12 06 00 00 00

.005 48 24 28 20 24 02 11 00 26 25 10 00 00 00

.01 55 34 38 29 36 08 19 04 33 31 15 O0 08 02

.02 62 41 44 38 45 24 30 11 43 42 27 00 17 02

.03 65 47 50 44 51 36 37 15 51 46 33 00 22 09

.04 68 50 52 49 55 43 43 19 55 51 40 00 28 09

.05 71 54 55 53 59 49 46 23 58 54 43 00 32 09

.07 74 54 60 61 6±4 57 53 31 62 59 50 07 42 09

.10 78 64 65 69 71 64 61 4i 69 65 58 22 50 27

m0
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Table 17. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 93-100% Ability Range

False Proportion detected by

alarm

rate LR LR, LR; z z, F1 F2 S T2 T4 lOV JK O/E DFK
p p

17% Spuriously Low Treatment

.001 45 22 22 04 04 11 01 00 02 03 00 00 00 00

.005 55 42 40 13 11 27 09 09 15 11 00 00 00 00

.01 60 49 46 18 20 43 18 22 21 18 00 00 00 00

.02 67 54 53 26 29 55 30 35 33 29 01 00 00 00

.03 69 58 56 32 37 60 35 41 41 35 01 00 00 00

.04 71 60 58 37 41 63 41 48 47 41 02 00 01 00

.05 72 62 60 40 46 66 45 51 51 47 03 00 01 00

.07 74 65 62 48 54 71 53 58 56 53 04 02 03 00

.10 77 68 66 58 63 75 63 65 64 62 06 11 06 04

33% Spuriously Low Treatment

.001 64 42 40 04 32 02 06 00 20 33 09 00 02 00

.005 72 53 51 27 49 17 32 08 51 52 13 00 08 00

.01 76 61 59 39 62 36 46 21 59 60 20 00 13 00

.02 81 67 64 51 71 59 61 39 69 70 30 00 22 00

.03 83 70 68 59 77 69 67 48 74 74 35 00 27 05

.04 85 72 70 64 79 74 72 55 80 78 40 00 33 05

.05 86 74 73 68 82 78 75 59 83 81 44 00 38 05

.07 87 77 75 75 86 84 80 68 86 84 51 21 48 05

.10 90 79 77 82 90 87 86 76 90 87 58 41 57 21
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Discussion

In this chapter, we described Levine's (1985a, 1985b) theory of
psychological measurement. It was used to estimate COCCs for a sample of
2,891 examinees who responded to the AR subtest. Good to excellent fits were
obtained when the estimated COCCs were compared to empirical proportions
computed from the responses of a larger sample of 11,914 examinees. A
simulation data set was also used to investigate COCC estimates. Very
accurate estimates were obtained for ability ranges having sufficient numbers
of examinees who responded incorrectly.

The test information function of the polychotomous model was found to be
moderately larger than the three-parameter logistic information function for

low to moderately high ability levels. Since there is information in
incorrect options, it seems prudent to use it if items are expensive to write,

if the number of items that can be administered is severely limited, or if
very accurate ability estimates are required. Furthermore, we can now study
systematically the differences between items with informative incorrect
options and items with essentially noninformative incorrect options. It may
be possible to identify different characteristics of these two types of items.
Then item writers could explicitly attempt to write items with highly
informative incorrect options and thus increase the information about ability
provided by tests.

An Appropriateness Measurement simulation study was also conducted to
compare the polychotomous model with a dichotomous submodel; namely, the
three-parameter logistic. Several important results were obtained. First,
for the spuriously low treatment that simulates atypical educations,

misgridding answers to a portion of the test, unusual creativity, etc., we
found that optimal three-parameter logistic appropriateness indices fell far
short of their optimal polychotomous model counterparts. At some false alarm
rates, the rates of detection of aberrant response vectors were more than 100%
higher for the polychotomous optimal indices. Thus, Appropriateness
Measurement constitutes one important practical testing problem where
substantial gains are made by the use of a polychotomous item response model.

The results of the Appropriateness Measurement simulation study also
showed that the practical polychotomous model index zp was not a particularly

good index: Its detection rates were not close to optimal for either
spuriously high or spuriously low treatments. This result, in conjunction
with the results described previously, points to the need to devise better
polychotomous appropriateness indices that can be used in practical
situations.

A third result obtained in the Appropriateness Measurement research

reported in this chapter was that the z,, F2, and T4 indices effectively
detected aberrance in relation to three-parameter logistic optimal indices
(but not polychotomous model optimal indices). Therefore, if one is satisfied
with dichotomous scoring of item responses for some particular application,

I'. then z,, F2, and T4 can be used with confidence to detect inappropriate test
scores.
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In sum, COCC estimates provide opportunities to improve testing in a
variety of ways: ability estimation, the theory and practice of item writing,
and Appropriateness Measurement. Applications in areas such as the evaluation
of item and test bias and adaptive testing may also be fruitful.
Consequently, we conclude that there is information in incorrect responses and
that polychotomous item response models can make important contributions to
psychological testing.

IV. MULTI-TEST EXTENSIONS OF PRACTICAL AND

OPTIMAL APPROPRIATENESS INDICES

Introduction

This chapter describes methods for efficient detection of inappropriate
test scores in situations where examinees complete several short tests. In

particular, information about aberrance is pooled across tests that measure
distinct traits. This approach seems valuable for test batteries such as the
ASVAB, which contains a number of short power subtests.

Model-based approaches to the detection of aberrant response patterns
have generally assumed that the latent trait space is unidimensional. For
example, the three-parameter logistic model has been used by Levine and his
colleagues (Drasgow & Levine, 1986; Drasgow et al., 1985; Levine & Drasgow,
1982; Levine & Rubin, 1979). Tatsuoka (Harnisch & Tatsuoka, 1983; Tatsuoka,
1984) has used the two- and three-parameter logistic models for her extended

*....caution indices. Wright (1977) has tried to identify individuals who do not
conform to another unidimensional model; namely, the Rasch model.

In Chapter II, we found that appropriateness indices can provide very
high detection rates for long unidimensional tests. Detecting aberrant
response patterns on shorter tests was shown to be a much more difficult task
in Chapter III. What can be done to increase detection rates on short tests?
The solution does not lie in better appropriateness indices for unidimensional

.J tests, because no index computed from the item responses can provide higher
detection rates than the optimal index used in Chapter III. This fact led us
to devise methods for pooling information about aberrance across several

.short, unidimensional tests.

Another approach to detecting aberrant response patterns uses external
information to predict test scores. The standardized residual (i.e., the
standardized error of prediction) can then be used as an appropriateness
index. For example, test scores not included in a selection composite can be
used to predict the composite score. Persons who cheated on the tests
included in the composite, but not on the other tests, would be expected to
have large positive standardized residuals and therefore be identifiable.
Similarly, scores from operational sections of a test can be used to predict
scores on an experimental section in order to identify examinees who do not
make a serious effort on the experimental section. These examinees would be
expected to have large negative slaldardized residuals.

.. . '



Little is known about the efficacy of the standardized residual approach

to the identification of aberrant response patterns. In the second study
described in this chapter, we evaluated this approach and compared it to
model-based methods of Appropriateness Measurement.

The next section of this chapter describes multi-test extensions of six
practical appropriateness indices, and then presents one means of
approximating multi-test optimal indices. The approximation and multi-test
practical indices were evaluated in two studies. The first used simulated
ASVAB data so that all assumptions about the item responses (local
independence, three-parameter logistic item characteristic curves, etc.) were
correct. In the second study, an actual ASVAB data set was used so that the
performances of the appropriateness indices could be evaluated under realistic
conditions.

Multi-Test Extensions of Practical Appropriateness Indices

The basic assumption for our multi-test indices is that the test battery

consists of several unidimensional tests. Let Uj (U ..I U ) denote the
= ,-J

random vector of item responses for test i, I, ... , m, let u = (u ... ,

j -1
u ) denote a value of the random vector, and let 0 = (e1, ... , m ) denote a

vector containing the abilities measured by each of the m tests. Then
'" n

"" mf(ul , -?. uro 1e) Z R N(u 1 )

: Z I (jOj
m

Z Rl P(U I@.
j1l

where both equalities result from local independence. This shows that the
random vectors U are independent after conditioning on the individual

Ky abilities 0 J Consequently,

P(f(U 1 ) . f.m (Um)10) = H P(f (U )I ) (23)
-.. j=1 J

for arbitrary functions f (see Chung, 1974, p. 51), which means that

-j
functions of the item response are also conditionally independent.

Standardized Q, . The significance of Equation 23 for developing multi-
test extensions of appropriateness indices will be illustrated with
the standardized 2, indices. Let

Q. log P(U 1 u .... Um  m 0)

...



m
E log p(U u I@jl -

m ijm E oJ),

j=l

where

. log P(uj : uj I@

Then

m

E(o): E E[2 )
J=1

and by Equation 23

m ( )
Var(io) E Var( Z.

J=1

Hence, Z, can be standardized by

Z = Z - E(%,) (24)

[Var( o)] 112 "

Expressions for E(Q J ) ) and Var(i J )' were given by Drasgow et al. (1985) for

dichotomously and polychotomously scored item responses. We shall denote the
standardized Q, index by z3 when the three-parameter logistic model is used.
The index is denoted zp when it is based on a polychotomous model.

In practice, the 8 are not known. We have used maximum likelihood

estimates 8j in place of the 8 in our past research with apparent success

(see Drasgow et al., 1985, Figures 3 and 4). Of course other approaches to
estimation could be used. In fact, the well-known bias of maximum likelihood
estimates suggests that perhaps alternative estimation methods should be

explored.

Standardized extended caution indices. Let T2 (J ) and T4 (J) denote

Tatsuoka's (1984) second and fourth extended caution indices computed for the

Jth test. Tatsuoka found that E(T2(J)19.) = 0 and provided expressions for

E(T2(J)I9 and the conditional variances of T and T4 p The

standardized multi-test extensions of the two appropriateness
indices are then
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T2 E T (25)
[E Var(Te(J)10 1 Wj /2

and

Z (T4(j )  - E(T4(J)Ie )1
T, (26)

[E Var[T4(J) 1/ 11(2

Again, it is necessary to substitute estimates for the 8. in Equations 25 and

26.

Fit statistics. The squared standardized residual fit statistic
described by Wright (1977) involves an item-by-item standardization of the
dichotomously scored item responses. Let uij equal 1 or 0 depending upon

whether the examinee's response to item i on test .1 is correct or incorrect,
let PiJ (ej) equal the probability of a correct response to this item among

examinees with ability 9,, and let Q (ij() : 1 - P ij( ). Then a multi-test

* extension of Wright's statistic is

m n2

F = E E 11. uij - Eij(Gj)]2 ,j(Eu)Q.j(oj)} (27)
j=1 i:I

The second fit statistic that we investigated was described by Rudner
(1983). In our notation, this statistic is

F2(j ) = R /V

where

n 2
R = [u Pj(8j)

i=1 -i

and

nj

V : E P. (O)Qij(o)i: - j -i

An extension to the multi-test case is

m m
F2 = E R / E. V. (28)

j=1 -j
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Approximations to Optimal Appropriateness Indices

Unidimensional Tests. Levine and Drasgow (1984) showed that the most
powerful appropriateness index for a given form of aberrance on a
unidimensional test is the likelihood ratio statistic LR given in Equation 2.
In our past research, we have evaluated the integrals in PNormal(U) and

PAberrant(u) by Simpson's rule, and used about 20 values of e to give the

likelihood ratio LR adequate accuracy. Although these numerical integrations
are not particularly burdensome for a modern computer, generalizations to
multi-test optimal indices would require excessive computations to evaluate
multidimensional integrals. For this reason, we are led to seek a way to
evaluate the integrals that will have a more convenient multi-test
generalization.

Under general conditions, it can be shown that likelihood functions
asymptotically (with the number n of items) have the shape of normal

... densities. Consequently, for long tests

log Norma (uIG) aG2 + bO + c (29)

Throughout this chapter, we shall assume that the ability distribution
f(O) is the standard normal, whence log[f(@)] is a quadratic in e. Therefore,

- both log[Por(ulO),f(E)] and log[P P(U1).f(G) should be

approximately quadratic. The justification of this approximation lies in the
high degree of agreement in Equation 29 and the high rates of detection of
aberrant response patterns obtained in the present research. The
computational details needed to reproduce our algorithm and replicate our

-. results follow.

I f

2
log [Norma (u e)-f()]- a@ + be + c (30)

-. for a < 0 , then

'"-"' I " (aO' +bG+C)d
IP (u1O).f(O~d@ e a 2 becde[ ,-, ~-Normal (I _f_)d

c, b2 /2kz e- (.-b/k2 )'/[2(1/k2 )]dO

c b2/(-4a)/-i/a e e

where k :/-2a and the last equality results from recognizing that the
integrand in the previous equation is proportional to a normal density.

-, In order for this approximation to be accurate, the quadratic must fit
well near the maximum of y(O) log [P'ormal (ulO)'f()] . We used the

following iterative procedure to obtain the quadratic. It begins by

97
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evaluating y at five points: 80 = the maximum likelihood estimate 8 of 8; e0
+ .3; and 0' + .6. Then a diagonal weight matrix is created with non-zero
elements exp[y(8)-E(O)) corresponding to the five 0 values. These weights
are restricted to the interval (0.00001, 10.0] for computational reasons.
Then the method of weighted least squares is used to obtain the initial
coefficients (a°, b', co) of the quadratic.

The maximum of the fitted quadratic is 0' -b0'2a . If 0' is within .15
of 00, the iterative procedure ends; otherwise, five new 8 values are selected
as 8',

-1

0' ± /(a0 ) log(2/3)

and

0-.O' + (a ) I log(I/3)

Then the weights are recomputed, and weighted least squares is used to obtain

(a', b', c'). This process continues until 10 i+  - 0 i I .15. (Stricter
convergence requirements did not seem to improve the approximation in Equation
30.)

Two restrictions are imposed to ensure convergence:

i) a -.01
and

ii) 10 + I  - 'I 1.6/i

Convergence is usually obtained in one or two iterations.

Plotted in Figure 6 are 98 of 100 pairs of likelihood ratios. The
abcissa values are the likelihood ratios that resulted from using Simpson's
rule to evaluate P (u) and PAb (u); the ordinate values resulted

--Normal-Aern
from the quadratic approximations. The response patterns were simulated
normal examinees responding to a 30-item test, item characteristic curves were
three-parameter logistic ogives, ability was distributed as standard normal,
and the form of aberrance was 15% spuriously low. The two pairs of points not
plotted are (3.90, 3.91) and (5.07, 5.03).

in Figure 6, it is clear that the quadratic approximation was very
accurate for likelihood ratios of less than 2.0. It was somewhat less
accurate for larger values. In a variety of other tests, we found the
approximation to be accurate for other aberrance hypotheses, for both
simulated normal and simulated aberrant response patterns.

As a final check on the quadratic approximation, we determined hit rates
for the 33% spuriously low condition using the it(-' parameters from Chapter
III. In this analysis, response vectors were gene, ted from abilities in the
86 to 92 percentile range, and likelihoods were computed by Simpson's rule and

•' -8
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Figure 6. Likelihood ratios evaluated by Simpson's rule and the
quadratic approximation for simulated normal response
patterns.
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by the quadratic approximation method. The detection rates at several false

alarm rates are given below. LR, denotes the optimal index for the
dichotomously scored item responses (ICCs were three-parameter logistic
ogives), and LRp denotes the optimal index for polychotomously scored item

responses. It is clear that the quadratic approximation is sufficiently
accurate for our purposes.

False Alarm Rate

Index Method .001 .01 .03 .05 .10

LR Simpson .53 .67 .75 .78 .84

LR Quad. Approx. .54 .66 .75 .79 .85

LR3  Simpson .31 .53 .63 .68 .75
LR, Quad. Approx. .33 .51 .61 .66 .73

Two unidimensional tests. The likelihood that we must approximate is

F* z fI P(U 1  u 1 10e) P(U2 : u2 1 2) €2(P;O,E)d8 , (31)

where P(U : u 1l ) is the likelihood of u,, 1,2, under either the

normal or aberrant model, 0 = (01,62)', 0 = (0,0)',

1

is the covariance matrix of the two traits, and ¢2 is the bivariate

standard normal density,

-112 -1 1 -1
-2( ;o,) : (detE) / (21) exp[- - W E 0]

The final expression for the approximation and its derivation are given
in Appendix C. The final expression depends only on the correlation p between

0 1 and 02, which is assumed to be known, and the coefficients (a1 , bI , c1) and

(a2 b2, c) of the quadratic approximations that can be fitted to the

likelihood functions of the two tests separately by the method described for a
unidimensional test. Thus, we can fit quadratics to each separately by the
method previously described and then easily compute the approximation to F*.

Study One: Simulated ASVAB Data

Purpose. How effective are the practical multi-test appropriateness
indices relative to optimal multi-test appropriateness indices? What are the
upper limits on the detectabilities of certain benchmark forms of aberrance
when information from several short tests is combined?

In order for the optimal indices to be truly optimal, all assumptions
used to specify the index must be true. For this reason, data were simulated

a.-•



in Study One that perfectly satisfied all assumptions. In Study Two, an
actual ASVAB data set was used so that we could evaluate the properties of the
optimal and practical indices in realistic settings.

Data generation. The ASVAB AR subtest, the first of our two
unidimensional tests, is a 30-item, four-option multiple-choice test. A

-A

sample of N = 2,978 examinees was taken from the NORC data set by selecting
every fourth examinee (examinees 1, 5, 9, ...). The LOGIST (version 2B)
computer program (Wood et al., 1976) was used to estimate three-parameter
logistic ICCs. OCCs for the incorrect option (with omitted and not-reached
treated as a single incorrect option) were estimated by means of Levine's
(1985a; 1985b) MFS theory. A detailed description of these analyses was
presented in Chapter III.

The 15-item Paragraph Comprehension subtest and the 35-item Word
Knowledge subtest of the ASVAB were pooled to form our second unidimensional
test. These two tests correlate .82 (Ree, Mullins, Mathews, & Massey, 1982),
and their correlation corrected for attenuation is .96. Consequently, fitting
unidimensional item response models to the pooled, 50-item Word Knowledge -
Paragraph Comprehension (WKPC) subtest seemed justified.

As with the AR subtest, LOGIST was used to estimate ICCs, and MFS was
used to estimate OCCs. Plots showing estimated curves and empirical
proportions indicated good fits of both the ICCs and OCCs to the data.

The ICCs and OCCs estimated from the AR and WKPC subtests were used as
the "true" ICCs and OCCs for the rest of Study One. As the first step in the
simulation, a sample of 3,000 simulated response patterns was created and used
as a test norming sample. The ICCs previously estimated were used to
determine probabilities of correct responses, and the MFS OCCs were used to
determine the probabilities of incorrect options. Abilities for the two tests
were sampled from a bivariate standard normal distribution with the
correlation parameter set equal to .8 (the correlations of WK and PC with AR
are about .8 after correcting for unreliability; see Ree et al., 1982). Thus,
for each simulated response pattern, a vector (01, 82) was sampled from a

bivariate standard normal with a correlation of .8; 0 and the AR ICCs and

OCCs were used to simulate a polychotomously scored 30-item unidimensional
test; and 0 and the WKPC ICCs and OCCs were used to simulate a

2
polychotomously scored 50-item unidimensional test. The entire response
vector of 80 items was taken as the data provided by one simulee.

The test norming sample was then used to determine the item and test
". statistics required to compute the multi-test practical appropriateness

indices based on the three-parameter logistic model (z,, T2, T4, Fl, F2).
This entailed two runs of LOGIST (one for the simulated AR and one for the
simulated WKPC) and two runs of our own FORTRAN program.

A normal sample of 4,000 response vectors dnd 16 aberrant samples of
2,000 response vectors each were then created. The normal sample was
generated exactly as was the test norming sample (except, of course, that
different seeds were used for the random number generators). As in Chapters
II and III, the aberrant samples resulted from vairying three factors: the

% V
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type of aberrance (spuriously high; spuriously low), the severity of aberrance
(mild; moderate), and the distribution from which simulated abilities were
sampled.

Eight of the aberrant samples contained spuriously high response vectors,
and the remaining eight samples contained spuriously low response vectors.
Spuriously high response patterns were created replacing a given percentage k
of simulated responses (randomly sampled without replacement) with correct
responses for each of the two simulated unidimensional tests separately.
Spuriously low response patterns were also created by applying the spuriously
low manipulation to each of the two unidimensional tests separately. Mildly
aberrant response patterns were generated by using k = 15% (i.e., 5 of 30 AR
items and 8 of 50 WKPC items). Moderately aberrant response patterns were
created using k = 30% (i.e., 9 of 30 AR iems and 15 of 50 WKPC items).

The third variable manipulated was the ability level of the aberrant
sample. A composite ability was computed for each examinee by the formula

0 ~1  + e 2 S1/ : (9 + 02)/1.9

[Var(e 1 + 0 2)1/2 1 2

Notice that the composite ability has a standard normal distribution.
Composite abilities for the spuriously high samples were sampled from four
parts of the standard normal distribution: very low (Oth through 9th
percentiles), low (10th through 30th percentiles), low average (31st through
48th percentiles), and high average (49th to 64th percentiles). Composite
abilities were sampled from four average to high ability strata for the
spuriously low samples: low average (31st to 48th percentiles), high average
(49th through 64th percentiles), high (65th through 92nd percentiles), and
very high (93rd percentile and above).

Analysis. The practical appropriateness indices were computed for the

4000 response vectors in the normal sample. The item and test statistics
estimated from the test norming sample were used to compute all but one
appropriateness index. The one exception was the standardized Q, index
computed from the polychotomously scored item responses, denoted z p. It was

computed using the true OCCs and ICCs. This allowed us to bypass estimation
of OCCs from t'ie test norming sample and provided a significant reduction in
computing time. (Despite the advantage gained by being computed from true
rather than estimated OCCs, it is shown below that z fell short of some other

p
indices. Therefore, the advantage given to z was of little practical

p
consequence.)

One non-IRT index was also computed: the Deliberate Failure Key (DFK),
which was provided by the AFHRL.

Optimal appropriateness indices were computed (using the true OCCs and
ICCs) for the normal sample for four aberrant conditions: 15% spuriously
high, 30% spuriously high, 15% spuriously low, and 30% spuriously low. For
each of these conditions two optimal appropriateness indices were computed.
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The first, LRp, is the optimal index for polychotomous scoring of the item

responses. The second index, LR,, results from using only the information in

the dichotomously scored item responses. Thus, LR, is based on a submodel for
the polychotomous data in which all the incorrect responses are grouped
together.

The practical appropriateness indices were computed for each of the 16

aberrant samples. In addition, the three-parameter logistic and polychotomous
model 15% spuriously high optimal indices were computed for the four samples
with this form of aberrance, the 30% spuriously high optimal indices were
computed for the four samples with this form of aberrance, etc.

Results. The results for the spuriously high conditions are given in
Tables 18 through 21, and results for the spuriously low conditions are given

in Tables 22 through 25. These tables show that the multi-test extensions
provide sizable gains in detection rates. Table 18, which presents the
results for the lowest ability range, illustrates this point. At a 1% false
alarm rate for the 15% spuriously high condition, the polychotomous optimal
index LRp detected 22% of the aberrant response patterns if only the AR item

responses were used, 37% from the WKPC item responses, and 55% from the

combined 80 items. In Chapter II, we obtained a 50% detection rate under
these conditions (15% spuriously high, 0 to 9th percentile ability range) for
an 85-item unidimensional test. In fact, our polychotomous model, multi-test
optimal index provided detection rates that are very similar to the rates
obtained in Chapter II: At false alarm rates of 3%, 5% and 10%, our hit rates
were 67%, 72%, and 78% for the 15% spuriously high treatment, respectively;
the hit rates in Chapter II were 64%, 70% and 77%. For the 30% spuriously
high treatment at false alarm rates of 1%, 3%, 5%, and 10%, the hit rates were
88%, 92%, 94% and 95%, respectively; the hit rates in Chapter II were 93%,
95%, 97% and 98%.

Comparisons of Tables 18 through 25 with our earlier results reveal that
the polychotomous model, multi-test optimal indices provide detection rate,
that are generally similar to the rates provided by the polychotomous model
optimal indices for the long unidimensional test. The differences that occur
seem to be more due to the differences in the characteristics of the item

.. pools (the items in the earlier study tended to be more difficult than the
items used here) than to the dimensionality of the latent trait space (i.e.,
use of the multi-test extensions).

The hit rates for the multi-test practical appropriateness indices are

less similar to the hit rates of practical indices on long unidimensional
tests. The differences are particularly obvious for the spuriously high

conditions. Perhaps the best way to illustrate the differences is to compare
the detection rate of the best practical index to the detection rate of the
optimal index. At a 1% false positive rate for the 30% spuriously high
treatment in Table 18, this ratio equals .75 for z, divided by .88 for LR

p
namely, .75/.88 = .85. The corresponding ratio was .98 in Chapter II (.91 for
T2 divided by .93 for LR ). For the next higher ability range (10th throughP
30th percentiles), the ratio is .58 in Table 19; the corresponding ratio from
Chapter II is .91. Finally, the ratio for the low average ability range from
Table 20 is .47, and the ratio from Chapter II is .73.

S
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Table 18. Selected ROC Points for Spuriously High
Response Patterns Generated from the 00-09% Ability Range

False Proportion detected by
alarm
rate Test LR LR, z z, F1 F2 T2 T4 DFK-.' pP

15% Spuriously High Treatment

.001 AR 06 03 00 02 00 00 01 01
WKPC 19 07 00 05 00 01 01 03
MT 26 15 01 12 00 01 04 04 00

.01 AR 22 20 04 13 02 12 06 07
WKPC 37 22 04 24 00 10 07 09

: MT 55 37 07 36 00 18 15 14 01

.03 AR 38 31 09 25 04 24 19 16
WKPC 49 35 10 41 00 22 17 17
MT 67 48 14 56 03 37 23 25 04

.05 AR 46 39 14 33 13 32 26 21
7: WKPC 57 41 15 50 00 30 24 23

MT 72 53 19 65 07 49 39 32 08

.10 AR 55 50 25 50 35 49 42 33

WKPC 66 48 25 63 13 47 37 35
MT 78 62 28 76 40 66 56 47 26

30% Spuriously High Treatment

.001 AR 29 21 00 12 00 00 10 06
WKPC 42 19 00 21 00 01 14 17
MT 74 44 02 44 00 04 34 31 00

.01 AR 52 42 07 37 01 24 28 27
WKPC 68 41 07 50 00 18 33 34
MT 88 69 13 75 00 44 60 56 00

.03 AR 66 57 17 52 10 42 48 41
WKPC 79 53 15 67 00 39 50 48
MT 92 77 25 86 00 67 77 71 00

.05 AR 72 64 25 62 26 52 58 50

WKPC 82 59 22 76 03 50 60 55
MT 94 80 33 90 21 79 85 78 01

.10 AR 79 71 39 76 52 69 73 65
WKPC 86 64 34 84 34 70 73 69
MT 95 84 47 95 67 89 91 88 08
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Table 19. Selected ROC Points for Spuriously High
Response Patterns Generated from the 10-30% Ability Range

S: 
•  False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 DFK

p p

15% Spuriously High Treatment

.001 AR 04 03 00 01 00 00 01 00
WKPC 05 02 00 01 00 00 01 01
MT 10 07 00 03 00 00 03 03 00

.01 AR 17 17 02 10 01 06 07 08
WKPC 18 11 01 08 00 01 07 07
MT 37 27 02 16 00 04 12 12 00

.03 AR 33 28 06 19 03 14 18 16
WKPC 31 24 05 17 00 05 13 12
MT 50 42 06 31 01 13 23 22 00

*.-* .05 AR 40 37 09 26 09 20 24 22

WKPC 40 30 08 25 01 09 18 16
MT 58 49 09 38 04 22 32 28 00

.10 AR 51 49 19 40 25 34 40 33
WKPC 51 40 15 37 11 21 31 26
MT 66 59 17 52 21 38 47 41 03

30% Spuriodsly High Treatment

.001 AR 20 18 00 07 00 00 08 05
WKPC 16 08 00 04 00 00 08 07
MT 50 31 00 15 00 00 22 20 00

.01 AR 42 37 01 26 00 15 23 24
WKPC 45 28 02 17 00 03 22 20
MT 74 59 04 39 00 17 43 42 00

.03 AR 60 53 10 40 07 29 40 37
WKPC 60 42 06 31 01 13 35 32
MT 82 70 11 59 04 37 60 58 00

.05 AR 67 61 15 49 17 38 49 47
WKPC 66 49 10 40 07 22 43 38
MT 86 74 16 67 11 53 69 67 00

"10 AR 75 71 27 65 38 57 65 62

WKPC 72 56 19 53 24 40 57 52
MT 89 80 26 78 l 69 80 78 00
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Table 20. Selected ROC Points for Spuriously High

Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 DFK

15% Spuriously High Treatment

.001 AR 02 01 00 01 00 00 01 00
WKPC 00 00 00 00 00 00 01 01
MT 02 02 00 00 00 00 03 02 0

.01 AR 09 11 00 07 00 03 06 06
WKPC 05 04 00 02 00 00 05 04
MT 21 17 01 06 00 02 10 10 00

* .03 AR 24 21 03 14 02 08 16 14
WKPC 16 14 02 07 02 03 11 10
MT 35 31 03 16 03 08 20 20 00

.05 AR 34 30 05 19 07 13 21 21

WKPC 24 21 05 12 07 05 17 15
MT 45 40 06 22 06 14 27 27 00

.10 AR 46 45 13 33 18 26 36 35
WKPC 39 33 12 22 17 14 28 25
MT 59 51 12 34 19 27 39 40 00

30% Spuriously High Treatment

.001 AR 11 09 00 03 00 00 04 03
WKPC 02 01 00 00 00 00 03 03

MT 21 11 00 02 00 00 09 10 00

.01 AR 30 27 01 15 01 07 15 18
WKPC 19 12 01 04 01 01 11 11

MT 53 42 01 14 01 07 23 25 00

.03 AR 48 43 05 26 06 18 29 32

WKPC 35 24 03 12 05 05 19 19

MT 69 58 05 28 07 18 36 39 00

.05 AR 57 53 08 35 13 27 38 41

WKPC 45 32 06 19 12 10 26 25
MT 75 64 08 36 14 29 46 48 Oo

.10 AR 70 66 17 50 31 45 52 54

WKPC 56 44 14 29 25 23 38 37

MT 80 72 16 51 32 47 62 64 O0
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Table 21. Selected ROC Points for Spuriously High

Response Patterns Generated from the 49-64% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 DFK

15% Spuriously High Treatment

.01 AR 00 00 00 00 00 00 00 00

WKPC 00 00 00 00 00 00 00 00

MT 00 00 00 00 00 00 01 01 00

.01 AR 04 05 00 04 00 01 04 05

WKPC 01 01 00 00 01 00 03 03

MT 06 06 00 01 01 01 04 05 00

.03 AR 14 12 01 09 04 05 10 11

WKPC 05 05 02 03 05 02 08 08

MT 18 17 02 06 05 04 11 12 00

.05 AR 22 19 03 13 08 09 14 16

WKPC 11 11 04 06 10 04 12 11

MT 30 25 04 10 09 09 16 17 O0

.10 AR 37 33 09 23 16 20 25 26

WKPC 24 22 09 13 19 12 20 20

MT 47 42 08 19 19 19 28 29 00

30% Spuriously High Treatment

.001 AR 03 03 00 00 00 00 01 01
WKPC 00 00 00 00 00 00 01 01

MT 05 03 00 00 00 00 02 03 00

.01 AR 15 14 00 08 02 04 08 11
WKPC 06 05 00 01 02 00 05 05

MT 31 23 00 03 02 04 09 12 00

.03 AR 32 27 02 16 08 11 17 22

WKPC 18 12 02 05 08 03 l0 '0

MT 48 39 03 1 1 09 11 19 23 (0

.05 AR 42 36 05 21 14 18 22 27

WKC 27 22 04 08 14 06 15 15
MT 59 49 o5 17 15 19 28 3n 11

AR 58 54 11 34 27 30 J7

WKPC 41 34 1 15 2 27

MT 69 59 12 29 27 32 42 '4 ,
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Table 22. Selected ROC Points for Spuriously Low

* Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by
alarm
rate Test LR LR, z z, F1 F2 T2 T4 DFK

P P

15; Spuriously Low Treatment

.001 AR 05 00 00 01 00 00 00 ul
WKPC 07 02 00 00 00 00 03 02
MT 20 02 01 01 00 00 01 01 ,)0

.01 AR 13 04 07 06 01 03 04 04
WKPC 24 08 10 08 00 01 07 07
MT 32 08 16 12 00 02 06 09 00

.03 AR 22 10 14 11 05 07 09 11
WKP 37 23 22 19 02 05 13 13
MT 47 26 29 19 03 07 14 18 O0

.05 AR 26 18 20 16 10 10 15 15
WKPC 45 32 31 27 07 12 18 19
MT 54 38 36 29 09 13 21 24 01

.10 AR 39 29 30 26 22 19 24 24

WKPC 56 46 43 37 23 20 29 29
MT 65 55 52 41 27 25 33 33 06

30; Spuriously Low Treatment

.001 AR 06 00 00 02 00 00 02 01
WKPC 17 07 03 04 00 00 04 06
MT 38 16 08 08 00 00 04 07 00

.01 AR 21 08 11 11 02 06 06 08
WKPC 49 25 25 20 00 03 12 16
MT 62 33 36 26 00 06 13 20 00

.03 AR 38 24 22 19 09 12 15 16

WKPC 59 44 43 36 02 12 20 27
MT 73 52 53 41 06 17 25 31 02

.05 AR 46 32 30 24 19 18 18 22

WKPC 67 52 55 45 09 18 26 33
MT 80 63 64 49 15 27 33 41 05

.10 AR 59 47 44 36 35 29 29 34

WKPC 80 63 69 57 35 35 39 45
MT 88 75 77 60 43 42 45 54 i8
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VTable 23. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 49-64% Ability Range

False Proportion detected by

alarm _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

rate Test LR LR, z z, F1 F2 T2 T4 DFK
p p

15% Spuriously Low Treatment

.001 AR 03 00 00 01 00 00 01 01
WKPC 18 07 00 01 00 00 06 05
MT 25 04 02 03 00 00 05 05 00

0,

.01 AR 17 06 07 07 02 02 05 05
WKPC 44 25 11 12 01 02 16 14

- MT 50 27 18 17 01 03 16 15 00

* . .03 AR 27 15 14 13 08 07 13 12

WKPC 55 41 26 28 13 10 26 22
MT 63 45 34 31 15 11 27 27 00

.05 AR 32 24 20 18 16 11 17 17
WKPC 60 47 38 37 26 17 32 29
MT 67 52 44 40 27 20 36 34 00

.10 AR 43 34 33 29 29 20 29 27
WKPC 67 57 53 50 49 33 44 41

MT 75 63 58 52 51 34 48 46 01

30% Spuriously Low Treatment

.001 AR 11 01 01 03 00 00 03 01

WKPC 37 20 06 11 00 00 14 16

MT 60 34 16 16 00 00 14 16 00

.01 AR 32 14 15 15 02 07 10 10

WKPC 66 43 33 35 00 08 27 30

MT 78 52 50 41 00 12 30 35 00

.03 AR 46 29 29 24 13 13 20 20
WKPC 75 59 54 52 09 23 40 43

-C, MT 85 68 69 59 15 27 47 50 00

.05 AR 53 37 37 30 26 19 27 27
WKPC 79 66 67 61 27 32 48 50

MT 89 74 77 66 32 40 55 58 01

.10 AR 64 48 53 42 40 31 39 39

WKPC 87 76 80 72 57 53 60 62

MT 93 83 86 76 64 59 67 69 05
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Table 24. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 65-92% Ability Range

S False Proportion detected by

alarm

rate Test LR LR, z z, F1 F2 T2 T4 DFK

15% Spuriously Low Treatment

.001 AR 14 04 00 02 00 00 02 01

WKPC 42 27 03 05 00 00 18 14

MT 55 27 08 12 00 00 19 14 00

.01 AR 34 19 08 13 13 05 09 09

WKPC 66 49 22 25 16 09 35 30

MT 74 56 30 34 22 14 38 34 00

.03 AR 44 31 19 22 28 14 21 19

WKPC 73 61 42 45 43 25 50 42

MT 81 69 52 54 53 31 53 47 00

.05 AR 49 38 26 29 36 20 27 25

WKPC 75 65 54 55 58 35 58 49

MT 84 73 63 62 63 43 62 56 00

.10 AR 56 46 42 42 47 33 42 36

WKPC 80 72 69 69 74 56 68 63

MT 87 79 76 73 79 59 73 69 00

30% Spuriously Low Treatment

.001 AR 28 10 01 11 00 00 11 07

WKPC 61 42 10 22 00 01 39 37
MT 81 63 29 41 00 02 48 43 00

V .01 AR 48 31 22 30 12 16 26 24

WKPC 81 64 46 55 02 25 57 57

MT 89 76 67 69 07 39 66 66 00

- .03 AR 61 45 38 42 31 28 40 38

WKPC 85 75 68 71 30 48 69 67

MT 92 84 82 82 48 60 78 77 00

.05 AR 67 50 47 48 44 37 46 45

WKPC 88 79 79 78 54 60 75 73

MT 94 87 88 86 65 72 83 83 00

.10 AR 74 60 63 61 57 52 o0 56

WKPC 93 85 89 8b 79 76 82 82

MT 96 91 94 92 85 84 90 89 U

-................................................... 
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Table 25. Selected ROC Points for Spuriously Low
Response Patterns Generated from the 93-100% Ability Range

False Proportion detected by
alarm

rate Test LR LR, z z, F1 F2 T2 T4 DFK
p p

15% Spuriously Low Treatment

.001 AR 49 26 05 06 10 00 07 06
WKPC 66 46 07 05 02 00 39 24
MT 89 69 16 18 09 03 414 29 00

.01 AR 59 48 19 23 43 17 23 21
WKPC 80 62 38 35 40 18 57 48
MT 93 78 62 62 58 38 66 62 00

.03 AR 69 57 34 37 60 36 37 37
WKPC 85 74 57 59 70 40 70 63
MT 94 86 78 73 84 62 83 78 00

.05 AR 72 61 43 47 66 42 48 46
WKPC 86 77 71 69 80 56 78 71
MT 95 88 84 83 89 72 89 84 00

.10 AR 77 67 60 62 73 59 64 60
WKPC 89 82 83 80 89 67 87 81
MT 96 91 93 91 95 84 94 90 00

30% Spuriously Low Treatment

.001 AR 56 34 03 30 02 00 29 22
WKPC 78 61 12 27 00 00 61 62
MT 96 89 45 70 00 07 82 78 00

.01 AR 75 59 33 55 46 41 57 53
WKPC 90 79 58 70 00 43 82 79
MT 98 93 85 92 39 77 94 93 00

.03 AR 82 70 53 70 68 60 69 68
WKPC 93 85 78 85 55 71 89 86
MT 98 95 94 96 84 91 97 96 00

.05 AR 85 74 63 76 77 69 75 74
WKPC 94 87 87 90 76 80 92 90
MT 98 96 96 98 92 95 98 97 00

10 AR 89 80 80 86 85 81 85 83

WKPC 96 90 94 95 92 91 96 94
MT 99 97 98 99 97 98 99 99 00
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Discussion. The comparisons of the detection rates of the multi-test
practical indices to rates for LRp show an important difference between

unidimensional Appropriateness Measurement and multidimensional
Appropriateness Measurement. Specifically, z,, T2, and T4 efficiently
detected spuriously high response patterns on the long unidimensional SAT-V.
Tables 18 through 21 show that we did not replicate this finding with the
short AR and WKPC tests: There are substantial differences in hit rates
between practical and optimal multi-test appropriateness indices. This
finding provides a motivation for seeking better practical appropriateness
indices.

Study Two: Actual ASVAB Data

Purpose. Do the results obtained for simulated ASVAB data generalize to
actual ASVAB data? In previous research (Drasgow et al., 1985; Levine &
Drasgow, 1982), we found that unidimensional 2, appropriateness indices
provided similar rates of detection with real and simulated data. Will we
obtain similar results for the multi-test extensions of the standardized 2,
index and the other appropriateness indices?

For an optimal appropriateness index to be truly optimal, ICCs (and OCCs
if the analysis is polychotomous) must be known and must fit the data, tests
assumed to be unidimensional must be truly unidimensional, the correlation
between ability on test one and ability on test two must be known, and the
ability density must be known. We violated all of Lhese conditions in Study
Two. To what extent will detection rates for optimal indices be degraded?

Data sets. The NORC sample provided the data base for SLuy Two. The
test norming sample consisted of responses of the N = 2,978 NORC examinees
analyzed in the first phase of Study One. The AR and WKPC ICCs and OCCs
estimated from this sample were used for all analyses in Study Two. Also, the
statistics needed for the T2 and T4 indices were obtained from this sample.
Finally, a standardized residual (SR) measure was created by first regressing
the total number-right score from the AR and WKPC subtests on the Math
Knowledge (MK) and General Science kGS) subtests of the ASVAB,

Predicted (AR + WKPC) B, + 82MK + B]GS

- 7.98 + 1.20MK + 1.88GS

and then standardizing the residual

AR + WKPC - Predicted (AR + WKPC)

as described ty Cook and Weisberg (1982). The correlation between MK and AR,
after correcting for attenuation, is .88; the corrected correlation between GS
and WK is .94; and the corrected correlation between GS and PC is .90 (Ree et
a,., 1982). Large positive values of SR were used to indicate spuriously high
test scores, and large negative values of SR were taken to indicate spuriously
* icores.
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A normal sample of 2,716 response vectors was formed by selecting every
fourth examinee (2, 6, 10, ...) from the NORC sample, and then deleting the
data from the 262 examinees who failed to answer at least 77% of the items on
both the AR and the WKPC subtests. The requirement that examinees answer at
least 77% of the items is based on the Drasgow et al. (1985) conclusion that
test scores of individuals who answer less than 77% of the test are very
likely to be invalid measures of ability.

The remaining examinees from the NORC sample (examinees 3, 4, 7, 8, ii,
12,...) were used to form six more samples. These samples were created by
first determining the frequency distribution of total score across both the AR
and WKPC subtests (i.e., AR + WKPC); sorting into groups on the basis of the
percentiles used for the AFQT Categories; and finally, removing examinees who
answered fewer than 77% of the items on either the AR or WKPC subtests. Score
ranges and sample sizes for the six groups were:

AR + WKPC Sample
Sample Score Range Size

very high 74 to 80 494

high 59 to 73 1537

high average 50 to 58 941

low average 39 to 49 959

low 24 to 38 1155

very low 0 to 23 342

Aberrant samples were formed exactly as in Study One. Thus, the 15% and
30% spuriously high treatments were applied to the four lowest ability groups,
and the 15% and 30% spuriously low treatments were applied to the four
.iighest ability groups.

Analysis. Appropriateness indices were computed as in Study One, with
the main exception that optimal indices were computed with ICCs and OCCs
estimated from the test norming sample. The correlation between 0, and 0, was
assumed to be .8, and the ability density was assumed to be the standard
normal truncated to (-5.0, 3.5). Appropriateness indices were computed for
the six samples stratified on ability, before the aberrance treatments as well
as after each aberrance treatment.

Index standardization. Although each practical appropriateness index
(except DFK) was standardized, the expressions for the conditional

-. expectations and variances of the indices were obtained using the assumption
that 0, and 0, were known. Of course, in practice, they are unknown;
therefore, it is important to investigate the conditional distributions of the
appropriateness indices for normal examinees.

The standardizations of the practical indices can be determined from
Figure 7. This figure presents ROC curves for seven practical appropriateness

7 3
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indices: zp z,, F1, F2, T2, T4, and SR. Abcissa values in all cases were

determined from the normal sample of 2,716 examinees. For the top row of the
figure, ordinate values were based on the responses of the 342 examinees in
the very low ability range prior to any aberrance manipulation (i.e., this
sample was simply a normal, low ability group). Ordinate values for the
middle row of the figure were based on the low average sample, and the bottom
row was determined from the very high ability sample. Response patterns were
presumably normal for these two samples as well (we had not applied any
aberrance treatment). Only the lower left quarter of each ROC curve is shown,
in order to conserve space and because we are primarily concerned with an
index's standardization for low misclassification rates. Results for the
other three ability ranges are not shown because they were consistent with the
trends that are apparent in Figure 7.

In Figure 7, it is clear that z p, SR, and F1 are not consistently well

standardized; z, is reasonably well standardized across ability levels,
although its performance for the highest ability level is somewhat
disappointing; and F2 is fairly well standardized across ability levels. The
most surprising results are the very accurate standardizations of the multi-
test extensions of T2 and T4. Their standardizations were not very good for
the long unidimensional test studied in Chapter II; here, their
standardizations are excellent except, perhaps, for the highest ability group.

Detection of aberrant response patterns. Tables 26 through 33 present
the detection rates for the multi-test appropriateness indices when they are
applied to actual ASVAB data. Comparing the results for the spuriously high
conditions for real data (Tables 26 through 29) to the results for simulation
data (Tables 18 through 21) reveals generally similar detection rates. The
detection rates for the polychotomous model optimal index LR tended to be"-' p

moderately decreased for the actual ASVAB data, but detection rates for the
dichotomous model appropriateness indices were relatively unchanged.

Of the practical appropriateness indices, z, is clearly the most
effective for the lowest ability range. The T2 and T4 indices had detection
rates comparable to z, in the 10% to 30% ability range and appear slightly
superior for the low average and high average ability ranges. The other five
practical appropriateness indices (zp, Fl, F2, SR, and DFK) all had detection

rates far lower than z,, T2, and T4.

Although the detection rates for the spuriously high conditions are
similar across the simulated and real data sets, there Is an important
difference: Both the normal and the aberrant groups for the actual ASVAB data
sets had generally larger index scores. For example, 1.6% of the 4,000
simulated normals from Study One had z, scores less than -2.0,and 11.4% had z,
scores less than -1.0 . For the 2,716 NORC examinees taken as the normal
group, the corresponding rates were 3.4% and 16.2%. This trend was also

S2 apparent for T2, T4, and the three-parameter logistic optimal index. For
example, LR, had 4.2% and 12.9% of its values greater than 5 and 2,
respectively, for the NORC normals, versus only 1.8% and 7.7% for the Study
One simulated normals.
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Table 26. Selected ROC Points for Spuriously High Response Patterns
Created from NORC Examinees in the 00-09% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

15% Spuriously High Treatment

.001 AR 06 05 00 02 00 00 01 00
WKPC 06 04 00 00 00 04 00 00
MT 13 07 02 09 00 03 01 02 00 00

.01 AR 17 17 05 14 00 11 09 07
WKPC 24 21 09 26 00 17 09 10
MT 38 32 11 38 00 25 18 11 00 03

.03 AR 35 28 15 29 02 31 18 14
WKPC 36 36 22 43 00 32 18 22
MT 53 50 27 61 00 42 29 25 00 11

.05 AR 42 39 22 39 11 39 23 18
WKPC 39 41 32 54 02 37 25 29
MT 58 58 38 69 08 59 40 33 02 18

.10 AR 58 51 34 56 33 52 40 30
WKPC 49 52 47 69 23 55 41 46
MT 65 68 54 79 42 71 59 46 05 37

30% Spuriously High Treatment

.001 AR 26 10 00 10 00 01 04 00
WKPC 25 08 00 16 00 05 12 15
MT 52 48 01 48 00 10 32 20 01 00

.01 AR 48 39 04 39 00 21 29 25

WKPC 51 42 08 60 00 21 41 41
MT 82 72 17 75 00 43 64 56 04 00

.03 AR 67 58 21 55 07 45 46 39
WKPC 62 58 28 73 00 46 55 60
MT 84 81 32 89 00 65 75 72 14 02

.05 AR 70 64 32 65 21 54 57 45
WKPC 64 64 37 79 04 51 61 69
MT 88 84 47 93 25 80 83 77 25 03

.10 AR 76 73 45 81 51 69 71 61

WKPC 70 70 52 89 42 72 77 82

MT 90 89 61 96 67 90 93 88 39 20

7o
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Table 27. Selected ROC Points for Spuriously High Response Patterns

Created from NORC Examinees in the 10-30% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

" p p

15% Spuriously High Treatment

.001 AR 02 03 00 01 00 00 00 00

WKPC 04 02 00 02 00 00 02 01

MT 06 03 00 05 00 01 02 03 O0 00

.01 AR 15 14 01 09 00 06 05 05

WKPC 17 16 02 16 00 03 12 11

MT 28 26 03 19 00 06 18 12 01 00

.03 AR 30 29 07 21 01 17 17 13

WKPC 31 33 06 27 00 11 21 22
MT 47 45 07 38 O0 14 27 24 03 00

.05 AR 41 39 12 30 06 24 22 17

WKPC 38 39 11 34 01 14 27 28

MT 55 54 12 46 03 26 36 31 06 01

.10 AR 54 52 20 45 19 36 38 29

WKPC 51 53 20 47 10 27 42 42

MT 66 65 24 60 18 44 54 47 16 07

30% Spuriously High Treatment

.001 AR 18 11 00 07 00 00 04 01

WKPC 13 09 00 05 00 01 09 07

MT 33 35 00 17 00 01 18 10 02 00

.01 AR 43 35 01 26 00 09 23 21

WKPC 33 30 01 23 00 07 25 24

MT 64 58 03 38 00 15 46 40 09 00

.03 AR 60 55 10 43 03 31 43 41

WKPC 52 49 05 34 00 18 38 38
MT 77 71 09 63 00 34 59 60 23 00

.05 AR 68 63 16 54 11 41 51 47

WKPC 61 55 10 43 04 22 45 45

MT 82 79 15 70 10 50 70 69 33 00

.10 AR 75 73 29 71 32 59 67 62

WKPC 68 65 21 61 21 38 61 61

MT 88 86 30 82 36 70 82 80 50 02
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Table 28. Selected ROC Points for Spuriously High Response Patterns
Created from NORC Examinees in the 31-48% Ability Range

False Proportion detected by
alarm

rate Test LR LR, z z, F1 F2 T2 T4 SR DFK
p p

15% Spuriously High Treatment

.001 AR 01 01 00 01 00 00 00 00
WKPC 00 00 00 00 00 00 01 00
MT 01 00 00 00 00 00 01 01 00 00

.01 AR 08 08 01 04 00 01 05 04
WKPC 03 02 00 03 00 01 04 04
MT 09 07 01 03 00 01 08 06 02 00

.03 AR 19 18 04 12 01 07 14 12
WKPC 12 11 01 06 01 03 09 11
MT 24 21 02 13 01 03 16 16 09 00

.05 AR 27 27 07 19 03 13 20 16
WKPC 19 16 02 08 02 04 14 15
MT 33 30 03 17 03 10 21 21 15 00

.10 AR 41 39 13 32 12 23 31 28
WKPC 33 31 08 18 10 10 24 24
MT 50 47 10 28 11 21 34 32 27 00

30% Spuriously High Treatment

.001 AR 09 06 00 02 00 00 01 00
WKPC 01 01 00 00 00 00 01 01
MT 09 11 00 01 00 00 03 02 03 00

.01 AR 30 23 01 15 00 04 14 16
WKPC 09 07 00 02 00 01 07 07
MT 42 31 00 07 00 03 17 17 13 00

.03 AR 46 43 04 29 03 19 30 31
WKPC 24 20 01 06 01 04 13 15
MT 61 50 01 20 01 11 28 32 27 00

.05 AR 55 51 09 36 08 29 37 37
WKPC 33 31 02 09 06 06 17 20
MT 67 61 03 28 08 22 37 42 38 00

.10 AR 68 64 19 50 23 43 50 52
WKPC 45 44 07 20 14 14 30 32
MT 77 73 13 45 20 40 54 59 57 00
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Table 29. Selected ROC Points for Spuriously High Response Patterns

Created from NORC Examinees in the 49-64% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

,-"p p

15% Spuriously High Treatment

.001 AR 00 01 00 00 00 00 00 00

WKPC 00 00 00 00 00 00 00 00

MT 00 00 00 00 00 00 00 00 01 00

.01 AR 02 03 01 02 00 01 02 02
WKPC 01 00 00 00 00 00 01 01

MT 02 01 00 01 00 01 03 03 04 00

.03 AR 10 10 02 08 02 03 10 11
WKPC 04 02 00 01 03 01 04 02

MT 12 08 01 04 01 02 12 09 15 00

.05 AR 18 18 04 15 07 08 15 15

WKPC 07 05 01 03 06 03 07 10
MT 23 18 01 07 07 07 12 15 21 00

.10 AR 34 34 09 25 14 18 26 25
WKPC 20 16 04 10 13 09 14 17
MT 43 37 07 16 16 17 24 26 35 00

30% Spuriously High Treatment

.001 AR 03 01 00 01 00 00 01 00

WKPC 00 00 00 00 00 00 00 00

MT 01 01 00 00 00 00 01 00 04 00

.01 AR 12 09 00 05 01 01 05 07
WKPC 02 01 00 00 00 01 02 02

MT 15 10 00 01 00 01 05 06 13 00

.03 AR 26 25 01 16 05 08 18 21
WKPC 10 07 01 02 04 02 05 07

MT 37 29 01 05 03 06 12 18 28 00

.05 AR 36 36 04 23 10 18 23 25
WKPC 17 14 01 03 08 03 08 12
MT 48 45 01 09 09 13 18 23 38 00

-5.

.10 AR 54 53 13 35 22 29 34 39
WKPC 32 30 06 08 16 10 16 21

MT 64 62 07 21 21 26 34 38 54 00
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Table 30. Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 31-48% Ability Range

False Proportion detected by

*.' alarm
rate Test LRp LR, zp z, F1 F2 T2 T4 SR DFK

15% Spuriously Low Treatment

.001 AR 00 00 01 01 00 00 00 00
WKPC 01 00 00 01 00 00 01 01
MT 02 00 00 01 00 00 01 00 00 00

.01 AR 05 01 02 02 00 01 01 01
WKPC 09 02 01 07 00 01 06 05
MT 11 04 02 05 00 01 05 03 01 00

.03 AR 14 05 08 08 01 05 06 06
WKPC 22 15 03 16 00 04 12 14
MT 26 17 06 15 00 03 09 10 o6 00

.05 AR 19 11 13 12 03 09 09 07
WKPC 31 27 09 20 01 05 16 18
MT 35 26 14 20 02 08 15 16 10 00

.10 AR 30 23 23 21 13 16 16 16

. WKPC 46 41 26 35 13 14 26 28
* MT 52 45 32 33 14 16 27 27 18 04

30% Spuriously Low Treatment

.001 AR 01 01 01 01 00 00 01 00
WKPC 07 01 01 02 00 00 03 03
MT 03 03 00 03 00 00 02 01 01 00

.01 AR 11 04 04 05 00 03 03 04

WKPC 24 21 02 19 00 02 11 16
MT 26 26 07 16 00 02 10 12 06 00

.03 AR 25 16 13 12 01 09 09 10

WKPC 41 40 16 31 00 11 20 28

MT 50 43 23 30 00 10 17 22 15 01

.05 AR 31 21 20 18 06 14 14 13

WKPC 49 48 33 40 03 15 27 32

MT 62 54 40 41 05 18 25 30 23 01

.10 AR 48 39 33 31 19 22 22 23
WKPC 72 62 55 56 21 30 39 49

MT 81 71 63 57 25 33 42 46 33 15

.... .... .. . .
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Table 31. Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 49-64% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

15% Spuriously Low Treatment

.001 AR 01 00 00 01 00 00 01 00
WKPC 07 02 00 01 00 00 01 01

MT 08 03 00 01 00 00 02 01 00 UO

.01 AR 11 05 01 04 00 01 04 03
WKPC 25 19 01 09 00 02 10 08
MT 28 24 01 08 00 01 f_ 10 01 00

.03 AR 23 12 08 12 02 06 11 11

WKPC 41 36 04 20 06 09 19 19

MT 45 40 08 24 04 06 21 20 05 00

.05 AR 28 20 14 16 09 09 15 13

" WKPC 47 46 15 26 20 11 25 26
MT 54 49 21 32 20 15 29 26 10 00

* .10 AR 39 32 25 27 23 10 27 23
WKPC 57 58 36 45 38 24 41 40
MT 69 64 42 46 42 29 45 43 16 00

- 30% Spuriously Low Treatment

.001 AR 02 02 00 01 00 00 01 00
WKPC 18 06 00 04 00 00 07 06

MT 13 15 01 07 00 01 07 03 01 00

.01 AR 23 10 03 10 00 02 10 08

WKPC 40 39 03 28 00 05 23 24

MT 50 48 09 28 00 05 27 26 08 00

.03 AR 41 28 20 21 04 11 21 18

WKPC 57 55 20 44 02 21 36 41

MT 69 62 31 50 02 17 41 44 17 00

.05 AR 47 34 29 21 1'4 17 25 23
WKPC 66 63 37 51 1 25 42 49

MT 77 69 53 61 21 33 50 51 24 00

.10 AR 61 49 45 42 33 27 39 36

WKPC 78 73 65 67 43 44 57 61
MT 87 80 75 73 51 51 66 65 37 02
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Table 32. Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 65-92% Ability Range

False Proportion detected by

alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

p p

15% Spuriously Low Treatment

.001 AR 08 04 00 01 00 00 01 00

WKPC 25 11 00 00 00 00 04 01
MT 39 24 00 03 00 00 07 02 00 00

.01 AR 33 21 03 11 06 03 12 09
WKPC 46 36 00 11 01 03 19 13
MT 62 53 05 19 01 06 29 23 02 00

.03 AR 45 34 16 24 23 17 24 23
WKPC 61 53 10 24 25 15 31 28
MT 74 66 21 41 31 22 42 38 10 00

.05 AR 52 42 26 31 33 24 31 27

WKPC 66 61 24 34 43 19 39 37
MT 79 72 42 51 55 34 52 46 15 00

.10 AR 61 50 43 45 47 36 44 40

WKPC 73 69 49 53 61 38 55 52
MT 84 80 68 67 74 50 68 61 25 00

30% Spuriously Low Treatment

.001 AR 15 14 00 08 00 00 06 01

WKPC 40 21 00 07 00 01 20 15
MT 44 48 00 29 00 02 32 20 05 00

.01 AR 45 31 07 26 05 10 26 22
WKPC 61 61 06 42 00 16 45 42

MT 76 73 21 55 00 27 63 57 17 00

.03 AR 58 45 30 41 03 29 44 39
WKPC 73 74 30 60 15 41 59 60
MT 85 82 51 76 25 50 73 71 32 00

.05 AR 64 51 43 50 36 39 51 45
WKPC 80 82 51 69 40 46 67 68

MT 90 87 74 81 56 65 80 79 40 00

.10 AR 74 61 61 64 52 52 62 59

WKPC 87 84 77 81 67 66 80 80

MT 95 92 89 90 80 79 89 88 55 00
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Table 33. Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 93-100% Ability Range

False Proportion detected by
alarm
rate Test LR LR, z z, F1 F2 T2 T4 SR DFK

p p

15% Spuriously Low Treatment

.001 AR 26 21 00 02 00 00 02 00
V WKPC 48 27 00 00 00 00 11 04

MT 72 56 00 05 00 00 19 04 00 00

.01 AR 56 43 07 14 32 10 19 11
WKPC 67 54 02 17 11 05 34 22
MT 85 78 15 28 23 14 50 39 01 00

.03 AR 65 56 25 30 55 32 35 31
WKPC 76 68 17 32 55 22 47 46

MT 91 85 37 57 74 38 66 59 15 00

.05 AR 69 63 38 39 63 42 42 41
WKPC 81 72 35 41 70 27 57 54

MT 92 88 62 68 87 59 74 68 29 00

.10 AR 73 67 57 60 714 57 59 57
WKPC 85 78 61 65 81 46 75 72
MT 94 90 84 84 94 73 88 84 45 00

" 30% Spuriously Low Treatment

. .001 AR 39 37 00 19 00 00 13 04
WKIPC 62 43 00 10 00 05 41 30
MT 78 77 01 50 00 10 65 46 06 00

.01 AR 72 55 09 45 23 26 44 43
WKPC 78 75 13 53 01 29 68 64
MT 96 91 36 78 04 58 88 83 37 00

.03 AR 81 66 45 61 58 55 64 61
WKPC 85 83 40 72 34 59 81 80
MT 98 94 74 92 64 80 93 92 64 00

.05 AR 83 70 60 70 69 64 70 67
WKPC 89 85 63 81 62 66 85 85
MT 98 95 88 96 87 90 95 94 73 00

.10 AR 88 77 78 83 81 77 80 79
WKPC 94 89 85 89 83 83 92 92
MT 99 97 98 98 95 95 98 98 84 00
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In sum, the distributions of index scores for the NOHC normals had more

extreme values than did the distribution for the Study One simulated normals.
Detection rates of spuriously high examinees did not significantly decrease,
however, because there were comparable shifts in the distributions of index
scores for the aberrant samples.

The results for the spuriously low ccnditions are shown in Tables 30
through 33. The detection rates for LR are somewhat lower in these tablesp

than the comparable rates (shown in Tables 22 through 25) obtained with
simulated data. The rates for LR, and z, remained basically unchanged. The
detection rates for LR decreased for two reasons. First, as noted above, the

distributions of index scores for the NORC normals shifted toward more extreme
values. Second, the distributions of LRp scores for the spuriously low

conditions were essentially unchanged. Thus, the "signal" was unchanged but
the "noise" increased; therefore, the signal-to-noise ratio decreased.

Z.
Although the rates of detection of spuriously low response patterns were

lower for LR with the NORC data than with the simulated data, some impressive
p

detection rates were nonetheless obtained. For example, LR detected 85% and

62% of the 15% spuriously low examinees for the very high and high ability
ranges at a 1% false alarm rate. The corresponding rates were 96% and 76% for
the 30% spuriously low treatment.

Discussion

The transition from simulated data in Study One to real data in Study Two
was very successful for the three-parameter logistic appropriateness indices.
Although detection rates for LR tended to be lower with the real data, some

. impressive results were nonetheless obtained. For example, 82% of the NORC
examinees in the lowest ability range who were subjected to the 30% spuriously
high treatment could be detected by the optimal LR index when the false alarm

p
rate was 1%; 75% could be detected by z,; and 64% could be detected by T2.

U.

In contrast to the high detection rates obtained by the IRT
appropriateness indices, very low detection rates were obtained by the SR
measure. For example, only 4% of the very low ability, 30% spuriously high
response patterns were identified by SR at a 1%-false alarm rate. The results
for SR are, in fact, even worse than they appear: SR is based on 30 AR items,
50 WKPC items, 25 MK items, and 25 GS items. Thus, a total of 130 items were
used for SR. The IRT appropriateness indices used only 80 items; considerably
higher detection rates would be expected if all 130 items were used.

The transition from simulated to real data was less successful for the
LR index in the spuriously low conditions. Detection rates were lower for
p

the real data because the distributions of index scores for normal NORC
examinees were shifted toward more extreme values. The distributions for
spuriously low response vectors, in contrast to the spuriously high response
patterns, were not similarly shifted.
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One hypothesis about the differences between the results for the real and
simulated data sets concerns the distributions of ability. For simulated
data, abilities were distributed as bivariate normal, with zero means, unit
variances, and a correlation of .8. The distributions of ability for the real
data were clearly nonnormal: A second mode of the density was evident at

N = -5. This second mode is clearly shown in Figure 4.

Why would a second mode appear at a very low ability? Since the NORC
examinees were not a sample of actual recruits, i; is possible that some were
poorly motivated to do their best. Indeed, some examinees omitted every item
on entire tests. Thus, we are led to hypothesize that the bivariate ability
distribution contains a nontrivial point mass corresponding to examinees who
were very poorly motivated. An optimal index for spuriously low examinees
based on the estimated distribution of ability should lead to increased rates
of detection.

%J V. DISCUSSION

In the present effort, several new appropriateness indices were
developed. These indices, as well as a number of appropriateness indices

previously developed, were carefully evaluated in a series of studies. By
comparing detection rates to the rates obtained by the optimal apropriateness
indices developed by Levine and Drasgow (1984; 1987), we were able to
determine the effectiveness of all of the indices in an absolute sense.
Detection rates for the three best practical indices (z,, T2, and T4) are
presented in Figure 8 as percentages of the optimal detection rate (at a 1%
error rate).

A major result of this effort is the finding that a few of the practical
appropriateness indices (namely, z,, T2, and T4) effectively detect aberrant
rpsponse patterns across a fairly wide range of conditions. Multi-test
extensions of these indices were developed for situations in which examinees
complete a battery of short unidimensional tests. The multi-test extensions
of z,, T2, and T4 were found to provide high rates of detection of aberrant
response patterns when simulated and actual ASVAB data were used. Thus, it
was concluded that these indices, which are all based on IRT, are strong
candidates for use in operational settings.

The standardized residual (SR) index provides another aproach to.
-. detection of inappropriate response patterns. Unlike IR indices, ni r

analyze the internal consistency of a response pattern, the SR index !e_

external information such as scores on other tests. This external .

used to predict scores on the tests of interest (e.g., AFQT subtes.3
large errors of prediction are taken as indicating that test scori
aberrant.

The SR index, in contrast to the IRT indices, was faumc
under all conditions. It therefore seems to be a weak operij
an important idea. IRT provides a much more precise and ;-
detecting aberrant response patterns than the classical
concepts used by SR.
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Figure 8. Detection rates of z1, T2, and T4 expressed as proportions
of the rate of the optimal index at a 1% false alarm rate.
(Rates are not plotted when the optimal index detected less
than 10% of the aberrant sample.)
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How effective are the best practical appropriateness indices in relation
to optimal indices? The practical appropriateness indices are much better
than non-IRT alternatives such as the SR measure, but sometimes fall short of
optimal. Therefore, it seems that operational use of z3 , T2, and T4 is
justified. Moreover, a program of research designed to develop and validate
better practical appropriateness indices is also warranted. This conclusion
was reached because z,, T2, and T4 decisively outperformed SR and other IRT
indices, but fell short of optimality in some cases.

The optimal appropriateness indices used in the present research seem to
be simultaneously too specific and not specific enough to use as practical
appropriateness indices. They are too specific in that different optimal
indices must be computed for differing percentages of spuriously high and
spuriously low responses. They are not specific enough in that ability is
assumed to be distributed as standard normal in both the normal and aberrant
groups. More specific assumptions about ability distributions, particularly
for the aberrant group, would seem to be desirable in many situations.

Therefore, it is important to develop a "second generation" of optimal
indices that could be used in practice to test hypotheses that are very
general in some ways but very specific in others. Examples of some hypotheses
that may be important to test include the following:

1. Was a response vector generated by a normal examinee or was it
generated by a very low ability (AFQT Category V) examinee who was cheating on
10 to 30 items? Low ability cheaters would be expected to have high rates of
attrition in training and generally poor on-the-job performance, both of which
are very costly.

2. Was a response vector generated by a high average (AFQT Category 3A)
examinee or a low average (AFQT Category 3B) examinee who was cheating on a
moderate number of items? Recruitment bonuses for AFQT Category 3A scores may
provide a powerful incentive for examinees slightly below average to cheat.

3. Suppose it is known that part or all of one subtest is no longer
secure. Was a response pattern generated by a normal examinee or by an
examinee who had prior access to the compromised items?

4. Are members of an ethnic minority penalized because a test was
developed and standardized using majority group members as examinees? The
likelihood of the response pattern could be computed using item parameters
estimated from a majority group sample and from a minority group sample. If
the test is fair, then even the optimal appropriateness index would be unable
to effectively classify majority and minority group members. In this way, the
methodology of optimal indices is applied to determine the extent to which
ethnicity can be determined from item response patterns.

Refinements in optimal indices would enable very powerful detection of
aberrant response patterns. For example, suppose we suspect that a very low
ability examinee has been given answers to a moderate number of items on the
AR, WK, and PC subtests in order to obtain an AFQT score that qualifies
him/her for a bonus. Furthermore, suppose that there was no cheating on the
non-AFQT subtests. Then we could test the hypothesis that the examinee was
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normal against the hypothesis that a low ability examinee cheated on 20 to 30
items on the AR, WK, and PC subtests and cheated on 0 items on the MK and GS
tests. Examinees who are aberrant in this particular way should be clearly
identifiable.

A significant part of the theory necessary for more sophisticated optimal
indices has already been developed by Levine and Drasgow (1984; 1987).
Nonetheless, a considerable amount of work is necessary to transform their
theoretical notions, which were developed in the context of a unidimensional
latent trait space, into methods that can be used to test the aberrance
hypotheses listed above.

It may seem that computing second-generation optimal indices would be
extremely burdensome. It is true that extensive calculations would be
necessary. The recursive methods described by Levine and Drasgow (1984; 1987)
and the quadratic approximation and multi-test generalizations developed here
considerably reduce the computing load. Furthermore, the rapid advances in
Levine's (1985a; 1985b) MFS theory allow algebraic simplifications and
eliminate the need for arbitrary assumptions about the ability density. In
particular, MFS now permits one to bypass the quadratic approximation used in
Chapter IV and relax the assumption of multivariate normal abilities.
Multidimensional extensions of Levine's theory are being developed to estimate
the Joint distribution of several abilities.

Finally, there are two important substantive questions about
Appropriateness Measurement that need to be addressed. First, the ability
densities estimated from the NORC sample depart significantly from a normal
density. This has led us to reconsider the way in which we compute optimal
indices. However, the NORC sample is not a sample of individuals who are
actually trying to enlist in the military. Would our results concerning
ability densities be replicated if data from actual recruits were used? Or
would the results be more similar to our studies with SAT-V data?

The second substantive question concerns the distributions of
appropriateness index scores in samples of women and ethnic minorities.
Finding similar distributions across all relevant groups would support the
view that standardized tests in general, and the ASVAB in particular, assess
ability fairly. This finding would be highly significant in light of the
underprediction of women's performances reported in some military training
schools (Dunbar & Novick, 1985).
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APPENDIX A: GOODNESS OF FIT OF AR COCCs ESTIMATED FROM A SAMPLE OF
N=2,891 AND EVALUATED USING THE ENTIRE SAMPLE OF N=11,914

j

93

'l



c-i-

- 4 I-

0

c\Jn

HH

0 J

__ _ __ _ __ _ ___o_ _ _ 0

944



F-oU

- I

uJ 0

H c

00

C;m

m o T a a0 mm m j

-95



-L o ij

LI

0

uiI 0

F-I-

oUJ

7~0

1 0 m T m I x 0 m I m__

96T



o WLi~

_ --

-------- L

6-4-

LJJ

% 0 M I

11!497



(l

- I
- -

0

a 0

LU

H 10
H l0 0U

a. m0 m 0 j11 C 0H

98
0 L



o WI

LI

HH

-cl

I-

00

a__ _ _ _ _ _ _ _ _ _ CO C

Li~J99



LLI
F1-

4--

(vn

I-l

H

LI

0

100-



uci

oU

101

fN N____ ____



0

I --

0 I

- F-

-F-I

0 IJ

102U

. -A p . . . . .. I



0

0 LI
--

o 0 L

c'Jl

LI

100



0

-r

-L I
-F

-4-

N 0

-- H

U* 0

a 0 M a

______________________________104__



cvi

I-

-0 LU

- I-

0

N6

- I-

F-4-

0

-l 0 U 0 1u

100



cc~

F-

c'JJ

zz
0

- II

0

0 L

- -

IA 0

r I
0i 0__ _ _ _ _ 0

-- %



0

- H

o Hd

0 L

H 0d

p - I

F-

0 L

I

-4--

0

LU100

H (1%



cc

- - c

Hr

-I

ci

Li wo6 1



APPENDIX B: ESTIMATED COCCS, SIMULATION COCCS, AND

EMPIRICAL PROPORTIONS FROM ESTIMATION SAMPLE
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APPENDIX C: MULTITEST EXTENSIONS OF OPTIMAL INDICES

An approximation to the likelihoods required for an optimal statistic for
two unidimensional tests is given in this appendix. The approach easily
generalizes to m > 2 dimensions.

To begin, rewrite F* from Equation 31 as

f f : P(U 1 u11 1)0(0)/0(0 1)1}

IP(U2 = u2 1e2 )[€(0 2 )/0(@ 2 )11 ] 2 (O;O,E)dO

ff [ea' 1+b18'+°/,(0 )] [eaHe0+b2O2+e/;()].2(O;OE)dO

'.'7" ~ a e z'
2+b,8 +c, (1/2)e a 2e +b 2e 2 C (1/2)G 2

=ff e e Ie 2e (1

..(det) -1/2 e(O ,-2pee,+e )/2(p-1 )dO

where *(-) is the standard normal density. For the next step in our analysis,
it is useful to rewrite this equation in matrix notation.
Consequently, let

A2  [a 0 b [b,

K [11,2 0] K
01[/ 0 K2  [00 10/21

K = 1PI E) 1

3 3 2(p2-1) p 1 2

Then

+. o'A 0+ bpe + ce2 + e'K 0e+ e'K 01d0

=(detE) - 112 eec '+c , ff exp[WOA + b'01de

where
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A A1 + K1 + A2 + K2 + K3

and

b= b1 +b2•

To complete the square in the exponent of the above integrand, notice
that since A is symmetric,

e'AO + b'A-1AO + .- 1b'A -1 -1 -1b

= (0 + 'A-lb)'A( +jA 1 b) -b'Alb

provided that A is negative definite. Diagonalize A by A VAV',
whreV' I lt -1 -1 -1/2 c,i-cik .Te

where V' = 1, let k = ---b'A b, and let w = (detE)- e Then
1 -1 1 -1

F = (detE) I/2 ec,+c,+K If exp[(O + !A b)' VAV' (0 + !A bl)Ide

= w If exp[O'VAV'OedO

w f exp[t'Atldt

where t = (ti, t2)' = O'V, because the Jacobian of the transformation is one.

The middle equality above holds because the volume of the bivariate density is
unaffected by the location parameter. Since A is diagonal with
negative diagonal elements A 1 and 2P

F. w exp[- _I (-2X,)]dt1 I exp[- _t 2(-ee)]dt 2

1 2 2 1 2 2

- Iexp[- 1 2 / o ]d I  I exp[- t / o2dt 2

-2iwo 1 a2

* where -2j = 1/02 j = 1,2. Because 2o - 1/X (detA>- 112

itj 1 2 1 l 2  (dt)"
(detA)-1/2, we obtain

F = iw(detA)-"/2

= n exp[c 1 + c2 - b'A-I b/41 (detE)-1/2 (detA)-112

as the final expression for our approximation to F* given in Equation 31.
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